11 resultados para OVERTURNING CIRCULATIONS
Resumo:
External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions(1). Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-richmiddle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few(2-4), especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional (similar to 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low-latitude climate regimes to high-latitude boundary conditions.
Resumo:
http://bjo.bmj.com/content/suppl/2001/06/20/85.7.DC1 Leukocyte-endothelial cell interactions play an important role in the pathogenesis of various types of retinal vascular diseases, including diabetes, uveitis, and ischemic lesions. Over the last few years, several methods have been devised in which the scanning laser ophthalmoscope (SLO) is used to study leukocyte-endothelial interactions in vivo [1,2]. Previously we reported a noninvasive in vivo leukocyte tracking method using the SLO in rat. In this method, a nontoxic fluorescent agent (6-carboxyfluorescein diacetate, CFDA) was used to label leukocytes in vitro. Leukocyte velocities within the retinal and choroidal circulations were be quantified simultaneously [3]. None of the previous methods has been developed for imaging the murine fundus, mainly due to problems arising from the small size of the mouse eye. However, there are many advantages of using a murine model to study retinal vascular diseases such as enhanced genetic definition, increased range of reagents available for immunological studies and cost reduction. We have developed our SLO method such that we can track leukocytes in the mouse retinal and choroidal circulations.
Resumo:
Cooling and sinking of dense saline water in the Norwegian–Greenland Sea is essential for the formation of North Atlantic Deep Water. The convection in the Norwegian–Greenland Sea allows for a northward flow of warm surface water and southward transport of cold saline water. This circulation system is highly sensitive to climate change and has been shown to operate in different modes. In ice cores the last glacial period is characterized by millennial-scale Dansgaard–Oeschger (D–O) events of warm interstadials and cold stadials. Similar millennial-scale variability (linked to D–O events) is evident from oceanic cores, suggesting a strong coupling of the atmospheric and oceanic circulations system. Particularly long-lasting cold stadials correlate with North Atlantic Heinrich events, where icebergs released from the continents caused a spread of meltwater over the northern North Atlantic and Nordic seas. The meltwater layer is believed to have caused a stop or near-stop in the deep convection, leading to cold climate. The spreading of meltwater and changes in oceanic circulation have a large influence on the carbon exchange between atmosphere and the deep ocean and lead to profound changes in the 14C activity of the surface ocean. Here we demonstrate marine 14C reservoir ages (R) of up to c. 2000 years for Heinrich event H4. Our R estimates are based on a new method for age model construction using identified tephra layers and tie-points based on abrupt interstadial warmings.
Resumo:
The Emerging Church Movement (ECM) is a reform movement within Western Christianity that reacts against its roots in conservative evangelicalism by “de-constructing” contemporary expressions of Christianity. Emerging Christians see themselves as overturning out-dated interpretations of the bible, transforming hierarchical religious institutions, and re-orientating Christianity to step outside the walls of church buildings toward working among and serving others in the “real world.”
Drawing on ethnographic observations from emerging congregations, pub churches, neo-monastic communities, conferences, online networks, in-depth interviews, and congregational surveys in the US, UK, and Ireland, this book provides a comprehensive social scientific analysis of the development and significance of the ECM. Emerging Christians are shaping a distinct religious orientation that encourages individualism, deep relationships with others, new ideas around the nature of truth, doubt, and God, and innovations in preaching, worship, Eucharist, and leadership.
Resumo:
The Faroe-Shetland channel is situated in the main path of the inflow of warm North Atlantic surface water to the Nordic seas and further provides an escape route for the cold Norwegian Sea Deep Water. AMS 14C dates of planktonic foraminifera covering Marine Isotope Stage 3 from two cores in the Faroe-Shetland channel will be used to trace past variability of the Atlantic Meridional Overturning Circulation (AMOC). The reservoir age R shows considerable variability ranging between 50 to 2750 14C years. In particular high R values are observed during Heinrich event 4 (H4) with values around 1550 14C years and during the Laschamp magnetic excursion with R values as high as 2700 14C years. The period between Greenland interstadial 8 (GI8) and GI5 show highly variable R values with interstadial R values around 500 – 650 14C years, i.e. slightly higher than ‘normal’, whereas stadials show either significantly higher or lower R values. From GI5 towards the Last Glacial Maximum R values are generally around 1000 14C years or higher. Using magnetic susceptibility, IRD and δ13C and δ18O values measured on the planktic foraminifera species Neogloboquadrina pachyderma, we compare the observed R variability with reconstructed changes in the Atlantic Meridional Overturning Circulation (AMOC). Furthermore a climate model of intermediate complexity (GENIE) including 14C is used as conceptual tool for identifying oceanographic configuration explaining the observed R variability.
Resumo:
Tephrochronological age models and 48 14C age determinations on molluscs and foraminifera (planktonic and benthic) are applied for the calculation of marine 14C reservoir age variability during a time period covering the Heinrich event H1 to early Holocene (16–9 cal kyr BP). Our data source consists of four high-resolution marine sediment cores (HM107-04, HM107-05, MD99-2271, MD99-2275) from the North Icelandic shelf. The marine reservoir age (ΔR) is found to be extremely variable, ranging from 385 to 1065 14C years. Extreme ΔR values occur at the end of H1, with values around 1000 14C years (~15 cal kyr BP), probably due to reduced northward flow of well-ventilated subtropical surface waters and a southward expansion of polar waters, as well as an expansion of sea ice limiting air-sea gas exchange. With the onset of the Bølling-Allerød interstadial, the ΔR values decrease towards 0 14C years suggesting a more vigorous North Atlantic Current and an active meridional overturning circulation system. During the Younger Dryas stadial, ΔR values are consistently around 700 14C years suggesting e renewed expansion of polar waters and a weakened meridional overtuning circulation. Interestingly, ΔR values remain high (~200 14C years) at the onset of the Holocene suggesting continued high influence of polar waters. Subsequently, ΔR values rapidly decrease to ~¬ 250 14C years around 11 cal kyr BP, indicating increased air-sea CO2 exchange with the coeval atmosphere. The ΔR values average around 0 14C years from around 10.5 to 9.0 cal kyr BP.
Resumo:
The North Atlantic has played a key role in abrupt climate changes due to the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to the location and strength of deep water formation. It is crucial for modelling future climate change to understand the role of the AMOC in the rapid warming and gradual cooling cycles known as Dansgaard-Oescher (DO) events which are recorded in the Greenland ice cores. However, palaeoceanographic research into DO events has been hampered by the uncertainty in timing due largely to the lack of a precise chronological time frame for marine records. While tephrochronology provides links to the Greenland ice core records at a few points, radiocarbon remains the primary dating method for most marine cores. Due to variations in the atmospheric and oceanic 14C concentration, radiocarbon ages must be calibrated to provide calendric ages. The IntCal Working Group provides a global estimate of ocean 14C ages for calibration of marine radiocarbon dates, but the variability of the surface marine reservoir age in the North Atlantic particularly during Heinrich or DO events, makes calibration uncertain. In addition, the current Marine09 radiocarbon calibration beyond around 15 ka BP is largely based on 'tuning' to the Hulu Cave isotope record, so that the timing of events may not be entirely synchronous with the Greenland ice cores. The use of event-stratigraphy and independent chronological markers such as tephra provide the scope to improve marine radiocarbon reservoir age estimates particularly in the North Atlantic where a number of tephra horizons have been identified in both marine sediments and the Greenland ice cores. Quantification of timescale uncertainties is critical but statistical techniques which can take into account the differential dating between events can improve the precision. Such techniques should make it possible to develop specific marine calibration curves for selected regions.
Resumo:
In this extended introductory essay, Catherine Gander and Sarah Garland suggest new ways of looking at the correspondences between visual and verbal practices to consider their material and conceptual connections in a specifically American set of histories, contexts and interpretive traditions. Tracing a lineage of experiential philosophy that is grounded in the overturning of a Cartesian mind/body split, the authors argue for pluralistic perspectives on intermedial innovations that situate embodied and imaginative reader-viewer response as vital to the life of the artwork. Gander and Garland chart two main strands to this approach: the pragmatist strain of American aesthetics and social politics, rooted in the essays of transcendentalist Ralph Waldo Emerson and emanating from the writings of John Dewey and William James; and the conceptualist strain of French-American Marcel Duchamp, whose ground-breaking ideas both positioned the artwork as a phenomenological construction and liberated the artist from established methods of practice and discourse. The ‘imagetext’ (after W. J. T. Mitchell) is therefore, argue Gander and Garland, a site consisting of far more than word and image – but a living assemblage of language, idea, thing, cognition, affect and shared experience.
Resumo:
Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the
European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are
characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly
highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted
that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated
since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being
widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns
made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider
rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the
evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach
such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical
approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the
approach proposed by Spanos (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion
equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a
real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made
about the overturning conditions and on the effect of forcing function’s frequency.
.