27 resultados para NONLINEAR SIGMA-MODELS
Resumo:
We propose a new approach for modeling nonlinear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of nonlinear SDEs that are reducible to Ornstein--Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a nonlinear transformation function. The main advantage of this approach is that these SDEs can account for nonlinear features, observed in short-term interest rate series, while at the same time leading to exact discretization and closed-form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted as OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed-form likelihood functions. The transition density, the conditional distribution function, and the steady-state density function are derived in closed form as well as the conditional and unconditional moments for both processes. In order to obtain a more flexible functional form over time, we allow the transformation function to be time varying. Results from our study of U.S. and UK short-term interest rates suggest that the new models outperform existing parametric models with closed-form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. To examine the joint behavior of interest rate series, we propose flexible nonlinear multivariate models by joining univariate nonlinear processes via appropriate copulas. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying symmetrized Joe--Clayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. (JEL: C13, C32, G12) Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.
Resumo:
Many modeling problems require to estimate a scalar output from one or more time series. Such problems are usually tackled by extracting a fixed number of features from the time series (like their statistical moments), with a consequent loss in information that leads to suboptimal predictive models. Moreover, feature extraction techniques usually make assumptions that are not met by real world settings (e.g. uniformly sampled time series of constant length), and fail to deliver a thorough methodology to deal with noisy data. In this paper a methodology based on functional learning is proposed to overcome the aforementioned problems; the proposed Supervised Aggregative Feature Extraction (SAFE) approach allows to derive continuous, smooth estimates of time series data (yielding aggregate local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The SAFE paradigm enjoys several properties like closed form solution, incorporation of first and second order derivative information into the regressor matrix, interpretability of the generated functional predictor and the possibility to exploit Reproducing Kernel Hilbert Spaces setting to yield nonlinear predictive models. Simulation studies are provided to highlight the strengths of the new methodology w.r.t. standard unsupervised feature selection approaches. © 2012 IEEE.
Resumo:
In many applications, and especially those where batch processes are involved, a target scalar output of interest is often dependent on one or more time series of data. With the exponential growth in data logging in modern industries such time series are increasingly available for statistical modeling in soft sensing applications. In order to exploit time series data for predictive modelling, it is necessary to summarise the information they contain as a set of features to use as model regressors. Typically this is done in an unsupervised fashion using simple techniques such as computing statistical moments, principal components or wavelet decompositions, often leading to significant information loss and hence suboptimal predictive models. In this paper, a functional learning paradigm is exploited in a supervised fashion to derive continuous, smooth estimates of time series data (yielding aggregated local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The proposed Supervised Aggregative Feature Extraction (SAFE) methodology can be extended to support nonlinear predictive models by embedding the functional learning framework in a Reproducing Kernel Hilbert Spaces setting. SAFE has a number of attractive features including closed form solution and the ability to explicitly incorporate first and second order derivative information. Using simulation studies and a practical semiconductor manufacturing case study we highlight the strengths of the new methodology with respect to standard unsupervised feature extraction approaches.
Resumo:
This paper presents two new approaches for use in complete process monitoring. The firstconcerns the identification of nonlinear principal component models. This involves the application of linear
principal component analysis (PCA), prior to the identification of a modified autoassociative neural network (AAN) as the required nonlinear PCA (NLPCA) model. The benefits are that (i) the number of the reduced set of linear principal components (PCs) is smaller than the number of recorded process variables, and (ii) the set of PCs is better conditioned as redundant information is removed. The result is a new set of input data for a modified neural representation, referred to as a T2T network. The T2T NLPCA model is then used for complete process monitoring, involving fault detection, identification and isolation. The second approach introduces a new variable reconstruction algorithm, developed from the T2T NLPCA model. Variable reconstruction can enhance the findings of the contribution charts still widely used in industry by reconstructing the outputs from faulty sensors to produce more accurate fault isolation. These ideas are illustrated using recorded industrial data relating to developing cracks in an industrial glass melter process. A comparison of linear and nonlinear models, together with the combined use of contribution charts and variable reconstruction, is presented.
Resumo:
The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.
Resumo:
This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.
Resumo:
The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.
Resumo:
It is shown how the Debye rotational diffusion model of dielectric relaxation of polar molecules (which may be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit sphere) may be extended to yield the empirical Havriliak-Negami (HN) equation of anomalous dielectric relaxation from a microscopic model based on a kinetic equation just as in the Debye model. This kinetic equation is obtained by means of a generalization of the noninertial Fokker-Planck equation of conventional Brownian motion (generally known as the Smoluchowski equation) to fractional kinetics governed by the HN relaxation mechanism. For the simple case of noninteracting dipoles it may be solved by Fourier transform techniques to yield the Green function and the complex dielectric susceptibility corresponding to the HN anomalous relaxation mechanism.
Resumo:
Structural and thermodynamic properties of spherical particles carrying classical spins are investigated by Monte Carlo simulations. The potential energy is the sum of short range, purely repulsive pair contributions, and spin-spin interactions. These last are of the dipole-dipole form, with however, a crucial change of sign. At low density and high temperature the system is a homogeneous fluid of weakly interacting particles and short range spin correlations. With decreasing temperature particles condense into an equilibrium population of free floating vesicles. The comparison with the electrostatic case, giving rise to predominantly one-dimensional aggregates under similar conditions, is discussed. In both cases condensation is a continuous transformation, provided the isotropic part of the interatomic potential is purely repulsive. At low temperature the model allows us to investigate thermal and mechanical properties of membranes. At intermediate temperatures it provides a simple model to investigate equilibrium polymerization in a system giving rise to predominantly two-dimensional aggregates.
Resumo:
This paper exposes the strengths and weaknesses of the recently proposed velocity-based local model (LM) network. The global dynamics of the velocity-based blended representation are directly related to the dynamics of the underlying local models, an important property in the design of local controller networks. Furthermore, the sub-models are continuous-time and linear providing continuity with established linear theory and methods. This is not true for the conventional LM framework, where the global dynamics are only weakly related to the affine sub-models. In this paper, a velocity-based multiple model network is identified for a highly nonlinear dynamical system. The results show excellent dynamical modelling performances, highlighting the value of the velocity-based approach for the design and analysis of LM based control. Three important practical issues are also addressed. These relate to the blending of the velocity-based local models, the use of normalised Gaussian basis functions and the requirement of an input derivative.
Resumo:
A conventional local model (LM) network consists of a set of affine local models blended together using appropriate weighting functions. Such networks have poor interpretability since the dynamics of the blended network are only weakly related to the underlying local models. In contrast, velocity-based LM networks employ strictly linear local models to provide a transparent framework for nonlinear modelling in which the global dynamics are a simple linear combination of the local model dynamics. A novel approach for constructing continuous-time velocity-based networks from plant data is presented. Key issues including continuous-time parameter estimation, correct realisation of the velocity-based local models and avoidance of the input derivative are all addressed. Application results are reported for the highly nonlinear simulated continuous stirred tank reactor process.
Resumo:
The eng-genes concept involves the use of fundamental known system functions as activation functions in a neural model to create a 'grey-box' neural network. One of the main issues in eng-genes modelling is to produce a parsimonious model given a model construction criterion. The challenges are that (1) the eng-genes model in most cases is a heterogenous network consisting of more than one type of nonlinear basis functions, and each basis function may have different set of parameters to be optimised; (2) the number of hidden nodes has to be chosen based on a model selection criterion. This is a mixed integer hard problem and this paper investigates the use of a forward selection algorithm to optimise both the network structure and the parameters of the system-derived activation functions. Results are included from case studies performed on a simulated continuously stirred tank reactor process, and using actual data from a pH neutralisation plant. The resulting eng-genes networks demonstrate superior simulation performance and transparency over a range of network sizes when compared to conventional neural models. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Despite the simultaneous progress of traffic modelling both on the macroscopic and microscopic front, recent works [E. Bourrel, J.B. Lessort, Mixing micro and macro representation of traffic flow: a hybrid model based on the LWR theory, Transport. Res. Rec. 1852 (2003) 193–200; D. Helbing, M. Treiber, Critical discussion of “synchronized flow”, Coop. Transport. Dyn. 1 (2002) 2.1–2.24; A. Hennecke, M. Treiber, D. Helbing, Macroscopic simulations of open systems and micro–macro link, in: D. Helbing, H.J. Herrmann, M. Schreckenberg, D.E. Wolf (Eds.), Traffic and Granular Flow ’99, Springer, Berlin, 2000, pp. 383–388] highlighted that one of the most promising way to simulate efficiently traffic flow on large road networks is a clever combination of both traffic representations: the hybrid modelling. Our focus in this paper is to propose two hybrid models for which the macroscopic (resp. mesoscopic) part is based on a class of second order model [A. Aw, M. Rascle, Resurection of second order models of traffic flow?, SIAM J. Appl. Math. 60 (2000) 916–938] whereas the microscopic part is a Follow-the Leader type model [D.C. Gazis, R. Herman, R.W. Rothery, Nonlinear follow-the-leader models of traffic flow, Oper. Res. 9 (1961) 545–567; R. Herman, I. Prigogine, Kinetic Theory of Vehicular Traffic, American Elsevier, New York, 1971]. For the first hybrid model, we define precisely the translation of boundary conditions at interfaces and for the second one we explain the synchronization processes. Furthermore, through some numerical simulations we show that the waves propagation is not disturbed and the mass is accurately conserved when passing from one traffic representation to another.