9 resultados para Multiple quantum wells


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solution-processed hybrid organic–inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7–10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on photoluminescence, Fourier transform infrared spectroscopy, and atomic force microscopy results, a new light emitting model for porous silicon (multiple source quantum well model) is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The issue of multiple proton transfer (PT) reactions in solution is addressed by performing molecular dynamics simulations for a formic acid dimer embedded in a water cluster. The reactant species is treated quantum mechanically, within a density functional approach, while the solvent is represented by a classical model. By constraining different distances within the dimer we analyze the PT process in a variety of situations representative of more complex environments. Free energy profiles are presented, and analyzed in terms of typical solvated configurations extracted from the simulations. A decrease in the PT barrier height upon solvation is rationalized in terms of a transition state which is more polarized than the stable states. The dynamics of the double PT process is studied in a low-barrier case and correlated with solvent polarization fluctuations. Cooperative effects in the motion of the two protons are observed in two different situations: when the solvent polarization does not favor the transfer of one of the two protons and when the motion of the two protons is not synchronized. This body of observations is correlated with local structural and dynamical properties of the solvent in the vicinity of the reactant. (C) 2000 American Institute of Physics. [S0021-9606(00)51121-0].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find a coupling-strength configuration for a linear chain of N spins which gives rise to simultaneous multiple Bell states. We suggest a way such an interesting entanglement pattern can be used in order to distribute maximally entangled channels to remote locations and generate multipartite entanglement with a minimum-control approach. Our proposal thus provides a way to achieve the core resources in distributed information processing. The schemes we describe can be efficiently tested in chains of coupled cavities interacting with three-level atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate control of the relative phase of multiple distinct sources of radiation produced by high harmonic generation is of central importance in the continued development of coherent extreme UV (XUV) and attosecond sources. Here, we present a novel approach which allows extremely accurate phase control between multiple sources of high harmonic radiation generated within the Rayleigh range of a single-femtosecond laser pulse using a dualgas, multi-jet array. Fully ionized hydrogen acts as a purely passive medium and allows highly accurate control of the relative phase between each harmonic source. Consequently, this method allows quantum path selection and rapid signal growth via the full coherent superposition of multiple HHG sources (the so-called quasi-phase-matching). Numerical simulations elucidate the complex interplay between the distinct quantum paths observed in our proof-of-principle experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results for a variety of Monte Carlo annealing approaches, both classical and quantum, benchmarked against one another for the textbook optimization exercise of a simple one-dimensional double well. In classical (thermal) annealing, the dependence upon the move chosen in a Metropolis scheme is studied and correlated with the spectrum of the associated Markov transition matrix. In quantum annealing, the path integral Monte Carlo approach is found to yield nontrivial sampling difficulties associated with the tunneling between the two wells. The choice of fictitious quantum kinetic energy is also addressed. We find that a "relativistic" kinetic energy form, leading to a higher probability of long real-space jumps, can be considerably more effective than the standard nonrelativistic one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the Fortran program SIMLA, which is designed for the study of charged particle dynamics in laser and other background fields. The dynamics can be determined classically via the Lorentz force and Landau–Lifshitz equations or, alternatively, via the simulation of photon emission events determined by strong-field quantum-electrodynamics amplitudes and implemented using Monte-Carlo routines. Multiple background fields can be included in the simulation and, where applicable, the propagation direction, field type (plane wave, focussed paraxial, constant crossed, or constant magnetic), and time envelope of each can be independently specified.