24 resultados para Multifunctional power converter
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance
Resumo:
The European Union has set a target of 20% for the share of renewable energy sources in gross final energy consumption in 2020. These renewable energy targets are priority objectives for the Europe 2020 strategy for inclusive growth. In line with the European Union renewable energy policies, the Northern Ireland Executive has a target to deliver 40% renewable electricity by 2020. Currently, Northern Ireland imports 98% of the energy it uses in the form of fossil fuels. Locally produced energy and electricity is needed to ensure sustainable development. The aim of this research is to develop part of a strategy for the mechanical power take-off system for a flap type wave energy converter. Aquamarine Power Ltd’s Oyster flap was the device used for simulation and testing purposes. In this paper the state-of-the-art of wave energy converters is reviewed and a 40th scale test model was developed and built.
Resumo:
Oscillating wave surge converters are a promising technology to harvest ocean wave energy in the near shore region. Although research has been going on for many years, the characteristics of the wave action on the structure and especially the phase relation between the driving force and wave quantities like velocity or surface elevation have not been investigated in detail. The main reason for this is the lack of suitable methods. Experimental investigations using tank tests do not give direct access to overall hydrodynamic loads, only damping torque of a power take off system can be measured directly. Non-linear computational fluid dynamics methods have only recently been applied in the research of this type of devices. This paper presents a new metric named wave torque, which is the total hydrodynamic torque minus the still water pitch stiffness at any given angle of rotation. Changes in characteristics of that metric over a wave cycle and for different power take off settings are investigated using computational fluid dynamics methods. Firstly, it is shown that linearised methods cannot predict optimum damping in typical operating states of OWSCs. We then present phase relationships between main kinetic parameters for different damping levels. Although the flap seems to operate close to resonance, as predicted by linear theory, no obvious condition defining optimum damping is found.
Resumo:
The effect of water depth on the performance of a small surging wave energy converter (WEC) is investigated analytically, numerically and experimentally. It is shown that although the average annual incident wave power is significantly reduced by water depth, a large proportion of this reduction is due to the dissipation of highly energetic, but largely unexploitable seas. It is also shown that the power capture is related more closely to incident wave force than incident wave power. Experimental results demonstrate that both the surge wave force and power capture of a flap-type WEC increase in shallow water.
Resumo:
This paper proposes new direct power control (DPC) strategies for three-phase DC/AC converters with improved dynamic response and steady-state performance. As with an electrical machine, source and converter flux which equal the integration of the respective source and converter voltage are used to define active and reactive power flow. Optimization of the look-up-table used in conventional DPC is outlined first, to improve the power control and reduce the current distortion. Then constant switching frequency DPC is developed where the required converter voltage vector within a fixed half switching period is calculated directly from the active and reactive power errors. Detailed angle compensation due to the finite sampling frequency and the use of integral controller to further improve the power control accuracy, are described. Both simulation and experimental results are used to compare conventional DPC and vector control, and to demonstrate the effectiveness and robustness of the proposed control strategies during active and reactive power steps, and line inductance variations.
Resumo:
This paper presents holistic design of a novel four-way differential power-combining transformer for use in millimeter-wave power-amplifier (PA). The combiner with an inner radius of 25 µm exhibits a record low insertion loss of 1.25 dB at 83.5 GHz. It is designed to simultaneously act as a balanced-to-unbalanced converter, removing the need for additional BALUNs typically required in differential circuits. A complete circuit comprised of a power splitter, two-stage differential cascode PA array, a power combiner as well as input and output matching elements was designed and realized in SiGe technology with f/f 170/250 GHz. Measured small-signal gain of at least 16.8 dB was obtained from 76.4 to 85.3 GHz with a peak 19.5 dB at 83 GHz. The prototype delivered 12.5 dBm output referred 1 dB compression point and 14 dBm saturated output power when operated from a 3.2 V dc supply voltage at 78 GHz.
Voltage Sensing Using an Asynchronous Charge-to-Digital Converter for Energy-Autonomous Environments
Resumo:
In future systems with relatively unreliable and unpredictable energy sources such as harvesters, the system power supply may become non-deterministic. For energy effective operations, Vdd is an important parameter in any meaningful system control mechanism. Reliable and accurate on-chip voltage sensors are therefore indispensible for the power and computation management of such systems. Existing voltage sensing methods are not suitable because they usually require a stable and known reference (voltage, current, time, frequency, etc.), which is difficult to obtain in this environment. This paper describes an autonomous reference-free voltage sensor designed using an asynchronous counter powered by the charge on a capacitor and a small controller. Unlike existing methods, the voltage information is directly generated as a digital code. The sensor, fabricated in the 180 nm technology node, was tested successfully through performing measurements over the voltage range from 1.8 V down to 0.8 V.
Resumo:
A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration. © 2009 Elsevier Ltd.
Resumo:
This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.
Resumo:
Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind farms for stability enhancement by using the proposed capability curve based reactive power controller; hence DFIG wind farms can function as vital dynamic reactive power resources for power utilities without commissioning additional dynamic reactive power devices. Several network adaptive droop control schemes are also proposed for network voltage management and their performance has been investigated during variable wind conditions. Furthermore, the influence of reactive power capability on network adaptive droop control strategies has been investigated and it has also been shown that enhanced reactive power capability of DFIGs can substantially improve the voltage control performance.
Resumo:
Optimal fault ride-through (FRT) conditions for a doubly-fed induction generator (DFIG) during a transient grid fault are analyzed with special emphasis on improving the active power generation profile. The transition states due to crowbar activation during transient faults are investigated to exploit the maximum power during the fault and post-fault period. It has been identified that operating slip, severity of fault and crowbar resistance have a direct impact on the power capability of a DFIG, and crowbar resistance can be chosen to optimize the power capability. It has been further shown that an extended crowbar period can deliver enhanced inertial response following the transient fault. The converter protection and drive train dynamics have also been analyzed while choosing the optimum crowbar resistance and delivering enhanced inertial support for an extended crowbar period.
Resumo:
The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy.
The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it.
This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions.
The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.
Resumo:
The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling-parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today's systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs ( logic, memory, mixed-signal) that are included in today's complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems.
Resumo:
DC line faults on high-voltage direct current (HVDC) systems utilising voltage source converters (VSCs) are a major issue for multi-terminal HVDC systems in which complete isolation of the faulted system is not a viable option. Of these faults, single line-to-earth faults are the most common fault scenario. To better understand the system under such faults, this study analyses the behaviour of HVDC systems based on both conventional two-level converter and multilevel modular converter technology, experiencing a permanent line-to-earth fault. Operation of the proposed system under two different earthing configurations of converter side AC transformer earthed with converter unearthed, and both converter and AC transformer unearthed, was analysed and simulated, with particular attention paid to the converter operation. It was observed that the development of potential earth loops within the system as a result of DC line-to-earth faults leads to substantial overcurrent and results in oscillations depending on the earthing configuration.