23 resultados para Materials handling equipment industry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to identify, clarify and tabulate the various managerial issues encountered, to aid in the management of the complex health and safety concerns which occur within a confined construction site environment.

Design/methodology/approach – This is achieved through conducting extensive qualitative and qualitative research in the form of case studies, interviews and questionnaire survey.

Findings – The leading managerial issues in the management of health and safety on a confined construction site are found to be: “Difficulty to move materials around site safely”; “Lack of adequate room for the effective handling of materials”; “Difficulty in ensuring site is tidy and all plant and materials are stored safely”; “Close proximity of individuals to operation of large plant and machinery”; and joint fifth “Difficulty in ensuring proper arrangement and collection of waste materials on-site” along with “Difficulty in controlling hazardous materials and equipment on site”.

Practical implications – The resulting implication for practice of these results can be summarised by identifying that with sustained development of urban centres on a global scale, coupled with the increasing complexity of architectural designs, the majority of on-site project management professionals are faced with the onerous task of completing often intricate designs within a limited spatial environment, under strict health and safety parameters.

Originality/value – The subsequent value of the findings are such that just as on-site management professionals successfully identify the various managerial issues highlighted, the successful management of health and safety on a confined construction site is attainable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. © 2012 Future Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to investigate the occupational hazards within the tanning industry caused by contaminated dust. A qualitative assessment of the risk of human exposure to dust was made throughout a commercial Kenyan tannery. Using this information, high-risk points in the processing line were identified and dust sampling regimes developed. An optical set-up using microscopy and digital imaging techniques was used to determine dust particle numbers and size distributions. The results showed that chemical handling was the most hazardous (12 mg m(-3)). A Monte Carlo method was used to estimate the concentration of the dust in the air throughout the tannery during an 8 h working day. This showed that the high-risk area of the tannery was associated with mean concentrations of dust greater than the UK Statutory Instrument 2002 No. 2677. stipulated limits (exceeding 10 mg m(-3) (Inhalable dust limits) and 4 mg m(-3) (Respirable dust limits). This therefore has implications in terms of provision of personal protective equipment (PPE) to the tannery workers for the mitigation of occupational risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The construction industry in Northern Ireland is one of the major contributors of construction waste to landfill each year. The aim of this research paper is to identify the core on-site management causes of material waste on construction sites in Northern Ireland and to illustrate various methods of prevention which can be adopted. The research begins with a detailed literature review and is complemented with the conduction of semi-structured interviews with 6 professionals who are experienced and active within the Northern Ireland construction industry. Following on from the literature review and interviews analysis, a questionnaire survey is developed to obtain further information in relation to the subject area. The questionnaire is based on the key findings of the previous stages to direct the research towards the most influential factors. The analysis of the survey responses reveals that the core causes of waste generation include a rushed program, poor handling and on-site damage of materials, while the principal methods of prevention emerge as the adequate storage, the reuse of material on-site and efficient material ordering. Furthermore, the role of the professional background in the shaping of perceptions relevant to waste management is also investigated and significant differences are identified. The findings of this research are beneficial for the industry as they enhance the understanding of construction waste generation causes and highlight the practices required to reduce waste on-site in the context of sustainable development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polypropylene (PP), a semi-crystalline material, is typically solid phase thermoformed at temperatures associated with crystalline melting, generally in the 150° to 160°Celsius range. In this very narrow thermoforming window the mechanical properties of the material rapidly decline with increasing temperature and these large changes in properties make Polypropylene one of the more difficult materials to process by thermoforming. Measurement of the deformation behaviour of a material under processing conditions is particularly important for accurate numerical modelling of thermoforming processes. This paper presents the findings of a study into the physical behaviour of industrial thermoforming grades of Polypropylene. Practical tests were performed using custom built materials testing machines and thermoforming equipment at Queen′s University Belfast. Numerical simulations of these processes were constructed to replicate thermoforming conditions using industry standard Finite Element Analysis software, namely ABAQUS and custom built user material model subroutines. Several variant constitutive models were used to represent the behaviour of the Polypropylene materials during processing. This included a range of phenomenological, rheological and blended constitutive models. The paper discusses approaches to modelling industrial plug-assisted thermoforming operations using Finite Element Analysis techniques and the range of material models constructed and investigated. It directly compares practical results to numerical predictions. The paper culminates discussing the learning points from using Finite Element Methods to simulate the plug-assisted thermoforming of Polypropylene, which presents complex contact, thermal, friction and material modelling challenges. The paper makes recommendations as to the relative importance of these inputs in general terms with regard to correlating to experimentally gathered data. The paper also presents recommendations as to the approaches to be taken to secure simulation predictions of improved accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increase in construction in dense urban environments, the delays associated with managing the material supply chain to site is called into question. Purpose: The aim of this investigation is to gain the perspective of construction contractors operating in a dense urban environment and the resulting strategies adopted to reduce delays in the delivery of materials to site. Methodology: This is achieved through incorporating a comprehensive literature review on the subject in conjunction with industry interviews with construction professionals in the identification of various management issues and corresponding strategies in the reduction of delays in the delivery of materials to site. Findings: The key issue which emerges is the lack of space for unloading bays while the corresponding key strategy is to schedule deliveries outside peak congestion times. Practical Implication: With confined site construction evident throughout the industry and the noted importance of an effective supply chain, the findings here in further assist on-site management in the daily task of ensuring the effective delivery and off-loading of materials in a complex and hazardous environment. Originality/Value: This research aids on-site management of confined site environments in the coordination of the material supply chain to site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation aims to characterise the damping properties of the nonwoven materials with potential applications in automotive and aerospace industry. Nonwovens are a popular choice for many applications due to their relatively low manufacturing cost and unique properties. It is known that nonwovens are efficient energy dispersers for certain applications such as acoustic damping and ballistic impact. It is anticipated that these energy absorption properties could eventually be used to provide damping for mechanical vibrations. However the behaviour of nonwovens under dynamic load and vibration has not been investigated before. Therefore we intend to highlight these aspects of the behaviour of the nonwovens through this research. In order to obtain an insight to the energy absorption properties of the nonwoven fabrics, a range of tests has been performed. Forced vibration of the cantilever beam is used to explore damping over a range of resonance modes and input amplitudes. The tests are conducted on aramid, glass fibre and polyester fabrics with a range of area densities and various coatings. The tests clarified the general dynamic behaviour of the fabrics tested and the possible response in more real application condition as well. The energy absorption in both thickness and plane of the fabric is tested. The effects of the area density on the results are identified. The main absorption mechanism is known to be the friction. The frictional properties are improved by using a smaller fibre denier and increasing fibre length, this is a result of increasing contact surface between fibres. It is expected the increased friction result in improving damping. The results indicate different mechanism of damping for fiber glass fabrics compared to the aramid fabrics. The frequency of maximum efficiency of damping is identified for the fabrics tested. These can be used to recommend potential applications.