34 resultados para Mammary neoplasi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods: Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results: Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 ng/ml) nor native LDL (100 ng/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CAVSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 micro.M), and MnTBAP (a free radical scavenger, 50 micro.M). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogeninduced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and superoxide levels were determined in IMA versus CA VSMC. Conclusions: Enhanced intrinsic antioxidant capacity may confer on IMAVSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to test these hypotheses: cystathionine gamma-lyase (CSE) is expressed in a human artery, it generates hydrogen sulfide (H2S), and H2S relaxes a human artery. H2S is produced endogenously in rat arteries from cysteine by CSE. Endogenously produced H2S dilates rat resistance arteries. Although CSE is expressed in rat arteries, its presence in human blood vessels has not been described. In this study, we showed that both CSE mRNA, determined by reverse transcription-polymerase chain reaction, and CSE protein, determined by Western blotting, apparently occur in the human internal mammary artery (internal thoracic artery). Artery homogenates converted cysteine to H2S, and the H2S production was inhibited by DL-propargylglycine, an inhibitor of CSE. We also showed that H2S relaxes phenylephrine-precontracted human internal mammary artery at higher concentrations but produces contraction at low concentrations. The latter contractions are stronger in acetylcholine-prerelaxed arteries, suggesting inhibition of nitric oxide action. The relaxation is partially blocked by glibenclamide, an inhibitor of K-ATP channels. The present results indicate that CSE protein is expressed in human arteries, that human arteries synthesize H2S, and that higher concentrations of H2S relax human arteries, in part by opening K-ATP channels. Low concentrations of H2S contract the human internal mammary artery, possibly by reacting with nitric oxide to form an inactive nitrosothiol. The possibility that CSE, and the H2S it generates, together play a physiological role in regulating the diameter of arteries in humans, as has been demonstrated in rats, should be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific survival signals derived from extracellular matrix (ECM) and growth factors are required for mammary epithelial cell survival. We have previously demonstrated that inhibition of ECM-induced ERK1/2 MAPK pathway with PD98059 leads to apoptosis in primary mouse mammary epithelial cells. In this study, we have further investigated MAPK signal transduction in cell survival of these cells cultured on a laminin rich reconstituted basement membrane. ERK1/2 phosphorylation is activated in the absence of insulin by cell-cell substratum interactions that cause ligand-independent EGFR transactivation. Intact EGFR signal transduction is required for ECM determined cell survival as the EGFR pathway inhibitor, AG1478, induces apoptosis of these cultures. Rescue of AG1478 or PD98059 treated cultures by PTPase inhibition with vanadate restores cellular phospho-ERK1/2 levels and prevents apoptosis. These results emphasize that ERK1/2 phosphorylation and inhibition of PTPase activity are necessary for PMMEC cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammary epithelial cells cultured on a concentrated laminin-rich extracellular matrix formed 3D acinar structures that matured to polarized monolayers surrounding a lumen. In the absence of glucocorticoids mature acinus formation failed and the expression of an acinus-associated, activator protein 1 (AP1) and nuclear factor kappaB transcription factor DNA-binding profile was lost. Treatment with the JNK inhibitor, SP600125, caused similar effects, whereas normal organization of the mammary epithelial cells as acini caused JNK activation in a glucocorticoid-dependent manner. The forming acini expressed BRCA1, GADD45beta, MEKK4, and the JNK activating complex GADD 45beta-MEKK4 in a glucocorticoid-dependent fashion. JNK catalyzed phosphorylation of c-Jun was also detected in the acini. In addition, expression of beta4 integrin and in situ occupation of its promoter by AP1 components, c-Jun and Fos, was glucocorticoid dependent. These results suggest that glucocortocoid signaling regulates acinar integrity through a pathway involving JNK regulation of AP1 transcription factors and beta4 integrin expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammary epithelial cells in primary cell culture require both growth factors and specific extracellular matrix (ECM)-attachment for survival. Here we demonstrate for the first time that inhibition of the ECM-induced Erk 1/Erk 2 (p42/44 MAPK) pathway, by PD 98059, leads to apoptosis in these cells. Associated with this cell death is a possible compensatory signalling through the p38 MAP kinase pathway the inhibition of which, by SB 203580, leads to a more rapid onset of apoptosis. This provides evidence for a hitherto undescribed Erk 1/Erk 2 to p38 MAP kinase pathway 'cross-talk' that is essential for the survival of these cells. The cell death associated with inhibition of these two MAP kinase pathways however, occurred in the presence of insulin that activates the classical PI-3 kinase-dependent Akt/PKB survival signals and Akt phosphorylation. Cell death induced by inhibition of the MAP kinase pathways did not affect Akt phosphorylation and may, thus, be independent of PI-3 kinase signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelia play important immunological roles at a variety of mucosal sites. We examined NFkappaB activity in control and TNF-alpha treated bovine mammary epithelial monolayers (BME-UV cells). A region of the bovine IL-8 (bIL-8) promoter was sequenced and a putative kappaB consensus sequence was identified bioinformatically. We used this sequence to analyse nuclear extracts for IL-8 specific NFkappaB activity. As a surrogate marker of NFkappaB activation, we investigated IL-8 release in two models. Firstly in BME-UV monolayers, IL-8 release in the presence of pro- and anti-inflammatory agents was determined by enzyme-linked immunosorbent assay (ELISA). Secondly, we measured IL-8 secretion from a novel model of intact mucosal sheets of bovine teat sinus. IL-8 release into bathing solutions was assessed following treatment with pro- and anti-inflammatory agents. TNF-alpha enhanced NFkappaB activity in bovine mammary epithelial monolayers. p65 NFkappaB homodimer was identified in both control and TNF-alpha treated cells. Novel sequencing of the bovine IL-8 promoter identified a putative kappaB consensus sequence, which specifically bound TNF-alpha inducible p50/p65 heterodimer. TNF-alpha induced primarily serosal IL-8 release in the cell culture model. Pre-treatment with anti-TNF or dexamethasone inhibited TNF-alpha induced IL-8 release. High dose interleukin-1beta (IL-1beta) induced IL-8 release, however significantly less potently than TNF-alpha. Bovine mammary mucosal tissue released high basal levels of IL-8 which were unaffected by TNF-alpha or IL-1beta but inhibited by both dexamethasone and anti-TNF. These data support a role for TNF-alpha in activation of NFkappaB and release of IL-8 from bovine mammary epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer treatment has been increasingly successful over the last 20 years due in large part to targeted therapies directed against different subtypes. However, basal-like breast cancers still represent a considerable challenge to clinicians and scientists alike since the pathogenesis underlying the disease and the target cell for transformation of this subtype is still undetermined. The considerable similarities between basal-like and BRCA1 mutant breast cancers led to the hypothesis that these cancers arise from transformation of a basal cell within the normal breast epithelium through BRCA1 dysfunction. Recently, however, a number of studies have called this hypothesis into question. This review summarises the initial findings which implicated the basal cell as the cell of origin of BRCA1 related basal-like breast cancers, as well as the more recent data which identifies the luminal progenitor cells as the likely target of transformation. We compare a number of key studies in this area and identify the differences that could explain some of the contradictory findings. In addition, we highlight the role of BRCA1 in breast cell differentiation and lineage determination by reviewing recent findings in the field and our own observations suggesting a role for BRCA1 in stem cell regulation through activation of the p63 and Notch pathways. We hope that through an increased understanding of the BRCA1 role in breast differentiation and the identification of the cell(s) of origin we can improve treatment options for both BRCA1 mutant and basal-like breast cancer subgroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BRCA1 is a well described breast cancer susceptibility gene thought to be involved primarily in DNA repair. However, mutation within the BRCA1 transcriptional domain is also implicated in neoplastic transformation of mammary epithelium, but responsible mechanisms are unclear. Here we show in a rat mammary model system that wild type (WT) BRCA1 specifically represses the expression of osteopontin (OPN), a multifunctional estrogen-responsive gene implicated in oncogenic transformation, particularly that of the breast. WT.BRCA1 selectively binds OPN-activating transcription factors estrogen receptor alpha, AP-1, and PEA3, inhibits OPN promoter transactivation, and suppresses OPN mRNA and protein both from an endogenous gene and a relevant model inducible gene. WT.BRCA1 also inhibits OPN-mediated neoplastic transformation characterized by morphology change, anchorage-independent growth, adhesion to fibronectin, and invasion through Matrigel. A mutant BRCA1 allele (Mut.BRCA1) associated with familial breast cancer lacks OPN suppressor effects, binds to WT.BRCA1, and impedes WT.BRCA1 suppression of OPN. Stable transfection of rat breast tumor cell lines with Mut.BRCA1 dramatically up-regulates OPN protein and induces anchorage independent growth. In human primary breast cancer, BRCA1 mutation is significantly associated with OPN overexpression. Taken together, these data suggest that BRCA1 mutation may confer increased tissue-specific cancer risk, in part by disruption of BRCA1 suppression of OPN gene transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small 1,000-bp fragments of genomic DNA obtained from human malignant breast cancer cell lines when transfected into a benign rat mammary cell line enhance transcription of the osteopontin gene and thereby cause the cells to metastasize in syngeneic rats. To identify the molecular events underlying this process, transient cotransfections of an osteopontin promoter-reporter construct and fragments of one metastasis-inducing DNA (Met-DNA) have identified the active components in the Met-DNA as the binding sites for the T-cell factor (Tcf) family of transcription factors. Incubation of cell extracts with active DNA fragments containing the sequence CAAAG caused retardation of their mobilities on polyacrylamide gels, and Western blotting identified Tcf-4, beta-catenin, and E-cadherin in the relevant DNA complexes in vitro. Transfection of an expression vector for Tcf-4 inhibited the stimulated activity of the osteopontin promoter-reporter construct caused by transiently transfected active fragments of Met-DNA or permanently transfected Met-DNA. This stimulated activity of the osteopontin promoter-reporter construct is accompanied by an increase in endogenous osteopontin mRNA but not in fos or actin mRNAs in the transfected cells. Permanent transfection of the benign rat mammary cell line with a 20-bp fragment from the Met-DNA containing the Tcf recognition sequence CAAAG caused an enhanced permanent production of endogenous osteopontin protein in vitro and induced the cells to metastasize in syngeneic rats in vivo. The corresponding fragment without the CAAAG sequence was without either effect. Therefore, the regulatory effect of the C9-Met-DNA is exerted, at least in part, by a CAAAG sequence that can sequester the endogenous inhibitory Tcf-4 and thereby promote transcription of osteopontin, the direct effector of metastasis in this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two major signaling pathways, those triggered by estrogen (E(2)) and by the Wnt family, interact in the breast to cause growth and differentiation. The estrogen receptors ER(alpha) and ER(beta) are activated by binding E(2) and act as ligand-dependent transcription factors. The effector for the Wnt family is the Tcf family of transcription factors. Both sets of transcription factors recognize discrete but different nucleotide sequences in the promoters of their target genes. By using transient transfections of reporter constructs for the osteopontin and thymidine kinase promoters in rat mammary cells, we show that Tcf-4 antagonizes and Tcf-1 stimulates the effects of activated ER/E(2). For mutants of the former promoter, the stimulatory effects of ER(alpha)/E(2) can be made to be dependent on Tcf-1, and for the latter promoter the effects of the T cell factors (TCFs) are dependent on ER/E(2). Direct interaction between ERs and Tcfs either at the Tcf/ER(alpha)-binding site on the DNA or in the absence of DNA is established by gel retardation assays or by coimmunoprecipitation/biosensor methods, respectively. These results show that the two sets of transcription factors can interact directly, the interaction between ERs and Tcf-4 being antagonistic and that between ERs and Tcf-1 being synergistic on the activity of the promoters employed. Since Tcf-4 is the major Tcf family member in the breast, it is suggested that the antagonistic interaction is normally dominant in vivo in this tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective inhibitors of osteopontin (OPN)-mediated neoplastic transformation and metastasis are still lacking. (-)-Agelastatin A is a naturally occurring oroidin alkaloid with powerful antitumor effects that, in many cases, are superior to cisplatin in vitro. In this regard, past comparative assaying of the two agents against a range of human tumor cell lines has revealed that typically (-)-agelastatin A is 1.5 to 16 times more potent than cisplatin at inhibiting cell growth, its effects being most pronounced against human bladder, skin, colon, and breast carcinomas. In this study, we have investigated the effects of (-)-agelastatin A on OPN-mediated malignant transformation using mammary epithelial cell lines. Treatment with (-)-agelastatin A inhibited OPN protein expression and enhanced expression of the cellular OPN inhibitor, Tcf-4. (-)-Agelastatin A treatment also reduced beta-catenin protein expression and reduced anchorage-independent growth, adhesion, and invasion in R37 OPN pBK-CMV and C9 cell lines. Similar effects were observed in MDA-MB-231 and MDA-MB-435s human breast cancer cell lines exposed to (-)-agelastatin A. Suppression of Tcf-4 by RNA interference (short interfering RNA) induced malignant/invasive transformation in parental benign Rama 37 cells; significantly, these events were reversed by treatment with (-)-agelastatin A. Our study reveals, for the very first time, that (-)-agelastatin A down-regulates beta-catenin expression while simultaneously up-regulating Tcf-4 and that these combined effects cause repression of OPN and inhibition of OPN-mediated malignant cell invasion, adhesion, and colony formation in vitro. We have also shown that (-)-agelastatin A inhibits cancer cell proliferation by causing cells to accumulate in the G(2) phase of cell cycle.