14 resultados para MIXED-OXIDE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to reactivate, stabilize and increase the lifetime of gold catalysts by dispersing large, inactive gold nanoparticles to smaller nanoparticles provides an opportunity to make gold catalysts more practical for industrial applications. Previously it has been demonstrated that mild treatment with iodomethane (CH3I) (J. Am. Chem. Soc., 2009, 131, 6973; Angew. Chem. Int. Ed., 2011, 50, 8912) was able to re-disperse gold on carbon and metal oxide supports. In the current work, we show that this technique can be applied to re-disperse gold on a ‘mixed’ metal oxide, namely a mechanical mixture of ceria, zirconia and titania. Characterization was conducted to gage the impact of the iodomethane (CH3I) treatment on a previously sintered catalyst.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of hydrogen by steam reforming of bio-oils obtained from the fast pyrolysis of biomass requires the development of efficient catalysts able to cope with the complex chemical nature of the reactant. The present work focuses on the use of noble metal-based catalysts for the steam reforming of a few model compounds and that of an actual bio-oil. The steam reforming of the model compounds was investigated in the temperature range 650-950 degrees C over Pt, Pd and Rh supported on alumina and a ceria-zirconia sample. The model compounds used were acetic acid, phenol, acetone and ethanol. The nature of the support appeared to play a significant role in the activity of these catalysts. The use of ceria-zirconia, a redox mixed oxide, lead to higher H-2 yields as compared to the case of the alumina-supported catalysts. The supported Rh and Pt catalysts were the most active for the steam reforming of these compounds, while Pd-based catalysts poorly performed. The activity of the promising Pt and Rh catalysts was also investigated for the steam reforming of a bio-oil obtained from beech wood fast pyrolysis. Temperatures close to, or higher than, 800 degrees C were required to achieve significant conversions to COx and H-2 (e.g., H-2 yields around 70%). The ceria-zirconia materials showed a higher activity than the corresponding alumina samples. A Pt/ceria-zirconia sample used for over 9 h showed essentially constant activity, while extensive carbonaceous deposits were observed on the quartz reactor walls from early time on stream. In the present case, no benefit was observed by adding a small amount of O-2 to the steam/bio-oil feed (autothermal reforming, ATR), probably partly due to the already high concentration of oxygen in the bio-oil composition. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism of CO oxidation reactions over undoped and gold-doped CuMnOX (Hopcalite) catalysts has been examined using a temporal analysis of products (TAP) reactor Gold doping has been found to increase the activity of the mixed oxide catalyst significantly however using consecutive pulsing TAP experiments the presence of gold was not found to affect the contribution of the Langmuir-Hinshelwood mechanism Conversely gold doping was found to promote the Mars van Krevelen mechanism Using CO and O-2 multi-pulse TAP experiments the gold was found to modify the catalyst surface such that it stores much more oxygen that is active for the CO oxidation The CO multi-pulse experiments indicated that two distinct types of active oxygen species were found to be involved in the CO oxidation One type was observed in a similar amount on both doped and undoped catalysts and was associated with mixed oxide while the second type was only found on the gold-doped catalyst and was therefore clearly associated with the presence of gold on the catalyst surface The latter was found to be much less active than the oxygen inherent to the oxide but was at a concentration of approximately 10 times larger leading to the enhanced activity observed on gold doping (C) 2010 Elsevier Inc All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparative study between a classic and a wireless electrochemical promotion experiment was undertaken as a tool towards the better understanding of both systems. The catalytic modification of a platinum catalyst for ethylene oxidation was studied. The catalyst was supported on yttria-stabilised-zirconia (YSZ), a known pure oxide ion conductor, for the classic experiment and La 0.6Sr0.4Co0.2Fe0.8O 3-δ-a mixed oxide ion electronic conductor-was used for the wireless experiment. The two systems showed certain similarities in terms of the reaction classification (in both cases electrophobic behaviour was observed) and the promotion mechanism. Significant difference was observed in the time scales and the reversibility of the induced rate modification. © 2008 Springer Science+Business Media B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chemoenzymatic synthesis of a Lewis basic phosphine-phosphine oxide organocatalyst from a cis-dihydrodiol metabolite of bromobenzene proceeds via a palladium-catalysed carbon-phosphorus bond coupling and a novel room temperature Arbuzov [2,3]-sigmatropic rearrangement of an allylic diphenylphosphinite. Allylation of aromatic aldehydes were catalysed by the Lewis basic organocatalyst giving homoallylic alcohols in up to 57% ee. This compound also functioned as a ligand for rhodium-catalysed asymmetric hydrogenation of acetamidoacrylate giving reduction products with ee values of up to 84%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity and nature (i e heterogeneous and/or homogeneous) of catalysts based on CsF supported on alpha-Al2O3 were investigated for the transesterification of vegetable oil with methanol. The effect of the activation temperature, CsF loading and the reusability in a recirculating reactor were first studied CsF/alpha-Al2O3 exhibited the highest activity for a CsF loading of 0 6 mmol/g and when activated at 120 degrees C An important aspect of this study is the effect of CsF leaching into the reaction mixture, which is attributed to the high solubility of CsF in methanol, leading to a complete loss of activity after one run It was Identified that the activity of the catalyst resulted from a synergy between alumina and dissolved CsF, the presence of both compounds being absolutely necessary to observe any conversion The use of an alumina with a higher surface area resulted in a far greater reaction rate, showing that the concentration of surface site on the oxide (probably surface hydroxyl) was rate-limiting in the case of the experiments using the low surface area alpha-Al2O3 This work emphasizes that combined homogeneous-heterogeneous catalytic systems made from the blending of the respective catalysts can be used to obtain high conversion of vegetable oil to biodiesel. Despite the homogeneous/heterogeneous dual character, such a catalytic system may prove valuable in developing a simple and cost-effective continuous catalytic process for biodiesel production (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The use of portable fractional exhaled nitric oxide (FENO) devices is increasingly common in the diagnosis and management of allergic airways inflammation. Methods We tested two handheld FENO devices, to determine (a) if there was adequate intradevice repeatability to allow the use of single breath testing, and (b) if the devices could be used interchangeably. In a mixed pediatric population, including normal, asthmatic, and children with peanut allergies, 858 paired values were collected from the NIOX-MINO® and/or the NObreath® devices. Results The NIOX-MINO® showed excellent repeatability (mean difference of 0.1 with 95% limits of agreement between -7.93 to 7.72?ppb), while the NObreath® showed good repeatability (mean difference of -1.61 with 95% limits of agreement between -14.1 and 10.8?ppb). Intradevice repeatability was good but not adequate and the NIOX-MINO® systematically produced higher results than the NObreath® [mean difference of 7.8?ppb with 95% limits of agreement from -11.55 to 27.52?ppb (-33% to 290%)]. Conclusions Our results support the manufacturer's advice that single breath testing is appropriate for the NIOX-MINO®. NObreath® results indicate that the mean of more than one breath should be utilized. The devices cannot be used interchangeably. Pediatr Pulmonol. © 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl) phosphonium acetate, [P-88812][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using 13C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)2 in 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], crystals were obtained that revealed the structure of [C2mim][Cu3(OAc)5(OH)2(H2O)]center dot H2O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. Thelectronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this "wireless" system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the "wireless" system that utilises chemical potential differences. In addition a 'surface oxygen capture' model is proposed to explain the permanent promotion of the catalyst activity. © 2007 Springer Science+Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been found that the catalytic activity and selectivity of a metal film deposited on a solid electrolyte could be enhanced dramatically and in a reversible way by applying an electrical current or potential between the metal catalyst and the counter electrode (also deposited on the electrolyte). This phenomenon is know as NEMCA [S. Bebelis, C.G. Vayenas, Journal of Catalysis, 118 (1989) 125-146.] or electrochemical promotion (EP) [J. Prichard, Nature, 343 (1990) 592.] of catalysis. Yttria-doped barium zirconate, BaZr0.9Y0.1O3 - α (BZY), a known proton conductor, has been used in this study. It has been reported that proton conducting perovskites can, under the appropriate conditions, act also as oxide ion conductors. In mixed conducting systems the mechanism of conduction depends upon the gas atmosphere that to which the material is exposed. Therefore, the use of a mixed ionic (oxide ion and proton) conducting membrane as a support for a platinum catalyst may facilitate the tuning of the promotional behaviour of the catalyst by allowing the control of the conduction mechanism of the electrolyte. The conductivity of BZY under different atmospheres was measured and the presence of oxide ion conduction under the appropriate conditions was confirmed. Moreover, kinetic experiments on ethylene oxidation corroborated the findings from the conductivity measurements showing that the use of a mixed ionic conductor allows for the tuning of the reaction rate. © 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material with potential to replace lead zirconate titanate (PZT),1 however high leakage conductivity for the material has been widely reported.2 Through a combination of Impedance Spectroscopy (IS), O2- ion transference (EMF) number experiments and O18 tracer diffusion measurements, combined with Time-of-flight Secondary Ion Mass Spectrometry (TOFSIMS), it was identified that this leakage conductivity was due to oxygen ion conductivity. The volatilization of bismuth during synthesis, causing oxygen vacancies, is believed to be responsible for the leakage conductivity.3 The oxide-ion conductivity, when doped with magnesium, exceeds that of yttria-stabilized zirconia (YSZ) at ~500 °C,3 making it a potential electrolyte material for Intermediate Temperature Solid Oxide Cells (ITSOCs). Figure 1 shows the comparison of bulk oxide ion conductivity between 2 at.% Mg-doped NBT and other known oxide ion conductors.

As part of the UK wide £5.7m 4CU project, research has concentrated on trying to develop NBT for use in Intermediate Temperature Solid Oxide Cells (ITSOCS). With the aim of achieving mixed ionic and electronic conduction, transition metals were chemically doped on to the Ti-site. A range of experimental techniques was used to characterize the materials aimed at investigating both conductivity and material structure (Scanning Electron Microscopy (SEM), IS, X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS)). The potential for NBT as an ITSOC material, as well as the challenges of developing the material, will be discussed.

(1) Takenaka T. et al. Jpn. J. Appl. Phys 1999, 30, 2236.

(2) Hiruma Y. et al. J. Appl. Phys 2009, 105, 084112.

(3) Li. M. et al. Nature Materials 2013, 13, 31.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm−1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm−2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.