15 resultados para Low Speed.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency pulsations contained within active power flow. A primary concern is excitation of low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of interconnection between the Northern and Southern power system networks. In order to determine whether the prevalence of wind generation has a negative effect (excites modes) or positive impact (damping of modes) on the power system, oscillations must be measured and characterised. Using time – frequency methods, this paper presents work that has been conducted to extract features from low-frequency active power pulsations to determine the composition of oscillatory modes which may impact on dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency periodic pulsations contained within the active power flow from different wind farms. A primary concern is excitation of existing low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of the interconnected Northern and Southern power system networks. Recently grid code requirements on the Northern Ireland power system have been updated stipulating that wind farms connected after 2005 must be able to control the magnitude of oscillations in the range of 0.25 - 1.75 Hz to within 1% of the wind farm's registered output. In order to determine whether wind farm low-frequency oscillations have a negative effect (excite other modes) or possibly a positive impact (damping of existing modes) on the power system, the oscillations at the point of connection must be measured and characterised. Using time - frequency methods, research presented in this paper has been conducted to extract signal features from measured low-frequency active power pulsations produced by wind farms to determine the effective composition of possible oscillatory modes which may have a detrimental effect on system dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.
Resumo:
Previous studies using low frequency (1 Hz) rTMS over the motor and premotor cortex have examined repetitive movements, but focused either on motor aspects of performance such as movement speed, or on variability of the produced intervals. A novel question is whether TMS affects the synchronization of repetitive movements with an external cue (sensorimotor synchronization). In the present study participants synchronized finger taps with the tones of an auditory metronome. The aim of the study was to examine whether motor and premotor cortical inhibition induced by rTMS affects timing aspects of synchronization performance such as the coupling between the tap and the tone and error correction after a metronome perturbation. Metronome sequences included perturbations corresponding to a change in the duration of a single interval (phase shifts) that were either small and below the threshold for conscious perception (10 ms) or large and perceivable (50 ms). Both premotor and motor cortex stimulation induced inhibition, as reflected in a lengthening of the silent period. Neither motor nor premotor cortex rTMS altered error correction after a phase shift. However, motor cortex stimulation made participants tap closer to the tone, yielding a decrease in tap-tone asynchrony. This provides the first neurophysiological demonstration of a dissociation between error correction and tap-tone asynchrony in sensorimotor synchronization. We discuss the results in terms of current theories of timing and error correction.
Resumo:
The chromium bearing wastewater in this study was used to simulate the low concentration discharge from a major aerospace manufacturing facility in the UK. Removal of chromium ions from aqueous solutions using raw dolomite was achieved using batch adsorption experiments. The effect of; initial Cr(VI) concentration, amount of adsorbent, solution temperature, dolomite particle size and shaking speed was studied. Maximum chromium removal was found at pH 2.0. A kinetic study yielded an optimum equilibrium time of 96 h with an adsorbent dose of 1 g/L Sorption studies were conducted over a concentration range of 5-50 mg/L Cr(VI) removal decreased with an increase in temperature (q(max): 20 degrees C = 10.01 mg/g; 30 degrees C = 8.385 mg/g; 40 degrees C = 6.654 mg/g; and 60 degrees C = 5.669 mg/g). Results suggest that the equilibrium adsorption was described by the Freundlich model. The kinetic processes of Cr(VI) adsorption onto dolomite were described in order to provide a more clear interpretation of the adsorption rate and uptake mechanism. The overall kinetic data was acceptably explained by a pseudo first-order rate model. Evaluated Delta G degrees and Delta H degrees specify the spontaneous and exothermic nature of the reaction. The adsorption takes place with a decrease in entropy (Delta S degrees is negative). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Impeller speed is one of the most crucial process variables that affect the properties of the granules produced in a high-shear granulator. Several reports can be found in literature that discuss the influence of impeller speed on the granules size. For instance some researchers like Knight report an increase of granule size with impeller speed [1] and [2], while others (Scheaefer et al. and Ramaker et al.) observed a decrease of granules size with increasing impeller speed [3] and [4]. However there is limited work reported in literature on the effect of the impeller speed on the mechanical properties of granules. Mechanical properties are important as they affect the performance of the granules on the other downstream process such as transportation and handling. The work reported here serves to address the missing in knowledge gap regarding the influence of impeller speed on mechanical properties granules. How the granulation system responds to the changes in the impeller speeds depends on binder that is used in the process. For this reason the two extreme cases, of a low viscosity binder system and high viscosity binder system are considered in this research. For low viscosity binder system it was observed that the granule size decreased with increasing impeller speed whilst for the high viscosity binder system the opposite was observed by Knight [1]. The granule strength, the Young's modulus and yield strength of the high viscosity granules increased with increasing impeller speed where as the opposite trends were observed for the low viscosity binder granules.
Resumo:
‘Temporally urgent’ reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.
Resumo:
In this paper, we propose a novel finite impulse response (FIR) filter design methodology that reduces the number of operations with a motivation to reduce power consumption and enhance performance. The novelty of our approach lies in the generation of filter coefficients such that they conform to a given low-power architecture, while meeting the given filter specifications. The proposed algorithm is formulated as a mixed integer linear programming problem that minimizes chebychev error and synthesizes coefficients which consist of pre-specified alphabets. The new modified coefficients can be used for low-power VLSI implementation of vector scaling operations such as FIR filtering using computation sharing multiplier (CSHM). Simulations in 0.25um technology show that CSHM FIR filter architecture can result in 55% power and 34% speed improvement compared to carry save multiplier (CSAM) based filters.
Resumo:
Very high speed and low area hardware architectures of the SHACAL-1 encryption algorithm are presented in this paper. The SHACAL algorithm was a submission to the New European Schemes for Signatures, Integrity and Encryption (NESSIE) project and it is based on the SHA-1 hash algorithm. To date, there have been no performance metrics published on hardware implementations of this algorithm. A fully pipelined SHACAL-1 encryption architecture is described in this paper and when implemented on a Virtex-II X2V4000 FPGA device, it runs at a throughput of 17 Gbps. A fully pipelined decryption architecture achieves a speed of 13 Gbps when implemented on the same device. In addition, iterative architectures of the algorithm are presented. The SHACAL-1 decryption algorithm is derived and also presented in this paper, since it was not provided in the submission to NESSIE. © Springer-Verlag Berlin Heidelberg 2003.
Resumo:
Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with regards to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is preferred for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine design. A range of mixed flow turbine rotors was designed with varying cone angle and inlet blade angle and each was assessed at a number of operating points. These rotors were based on an existing radial flow turbine, and both the hub and shroud contours and exducer geometry were maintained. The inertia of each rotor was also considered. The results indicated that there was a trade-off between efficiency and inertia for the rotors and certain designs may be beneficial for the transient performance of downsized, turbocharged engines.
Resumo:
Abstract. Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with respect to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger’s rotating assembly, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is desirable for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine designs.
This study considers the meridional geometry of Mixed Flow Turbines using a multi-disciplinary study to assess both the structural and aerodynamic performance of each rotor, incorporating both CFD and FEA. Variations of rotor trailing edge were investigated at different operating conditions representing both on- and off-design operation within the constraints of existing hardware geometries. In all cases, the performance is benchmarked against an existing state-of-the-art radial turbocharger turbine with consideration of rotor inertia and its benefit for engine transient performance. The results indicate the influence of these parameters and this report details their benefits with respect to turbocharging a downsized, automotive engine.
Resumo:
Roadside safety barriers designs are tested with passenger cars in Europe using standard EN1317 in which the impact angle for normal, high and very high containment level tests is 20°. In comparison to EN1317, the US standard MASH has higher impact angles for cars and pickups (25°) and different vehicle masses. Studies in Europe (RISER) and the US have shown values for the 90th percentile impact angle of 30°–34°. Thus, the limited evidence available suggests that the 20° angle applied in EN 1317 may be too low.
The first goal of this paper is to use the US NCHRP database (Project NCHRP 17–22) to assess the distribution of impact angle and collision speed in recent ROR accidents. Second, based on the findings of the statistical analysis and on analysis of impact angles and speeds in the literature, an LS-DYNA finite element analysis was carried out to evaluate the normal containment level of concrete barriers in non-standard collisions. The FE model was validated against a crash test of a portable concrete barrier carried out at the UK Transport Research Laboratory (TRL).
The accident data analysis for run-off road accidents indicates that a substantial proportion of accidents have an impact angle in excess of 20°. The baseline LS-DYNA model showed good comparison with experimental acceleration severity index (ASI) data and the parametric analysis indicates a very significant influence of impact angle on ASI. Accordingly, a review of European run-off road accidents and the configuration of EN 1317 should be performed.
Resumo:
Composites of Linear Low Density Polyethylene (LLDPE) and Graphene Nanoplatelets (GNPs) were processed using a twin screw extruder under different extrusion conditions. The effects of screw speed, feeder speed and GNP content on the electrical, thermal and mechanical properties of composites were investigated. The inclusion of GNPs in the matrix improved the thermal stability and conductivity by 2.7% and 43%, respectively. The electrical conductivity improved from 10−11 to 10−5 S/m at 150 rpm due to the high thermal stability of the GNPs and the formation of phonon and charge carrier networks in the polymer matrix. Higher extruder speeds result in a better distribution of the GNPs in the matrix and a significant increase in thermal stability and thermal conductivity. However, this effect is not significant for the electrical conductivity and tensile strength. The addition of GNPs increased the viscosity of the polymer, which will lead to higher processing power requirements. Increasing the extruder speed led to a reduction in viscosity, which is due to thermal degradation and/or chain scission. Thus, while high speeds result in better dispersions, the speed needs to be optimized to prevent detrimental impacts on the properties.