4 resultados para Learning of mathematics
Resumo:
In 2015 the Irish Mathematics Learning Support Network (IMLSN) commissioned a comprehensive audit of the extent and nature of mathematics learning support (MLS) provision on the island of Ireland. An online survey was sent to 32 institutions, including universities, institutes of technology, further education and teacher training colleges, and a 97% response rate was achieved. While the headline figure – 84% of institutions that responded to the survey provide MLS – sounds good, deeper analysis reveals that the true state of MLS is not so solid. For example, in 25% of institutions offering MLS, only five hours per week (at most) of physical MLS are available, while in 20% of institutions the service is provided by only one or two staff members. Furthermore, training of tutors is minimal or non-existent in at least half of the institutions offering MLS. The results provide an illuminating picture, however, identifying the true state of MLS in Ireland is beneficial only if it informs developments in the years ahead. This talk will present some of the findings of the survey in more depth along with conclusions and recommendations. Key among these is the need for institutions to recognise MLS as a vital element of mathematics teaching and learning strategy at third level and devote the necessary resources to facilitate the provision of a service which can grow and adapt to meet student requirements.
Resumo:
Different types of serious games have been used in elucidating computer science areas such as computer games, mobile games, Lego-based games, virtual worlds and webbased games. Different evaluation techniques have been conducted like questionnaires, interviews, discussions and tests. Simulation have been widely used in computer science as a motivational and interactive learning tool. This paper aims to evaluate the possibility of successful implementation of simulation in computer programming modules. A framework is proposed to measure the impact of serious games on enhancing students understanding of key computer science concepts. Experiments will be held on the EEECS of Queen’s University Belfast students to test the framework and attain results.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.