57 resultados para Lasers.
Resumo:
Double laser pulses of duration similar to 75 ps and short laser pulses similar to 1 ps superimposed on longer duration background pulses have been shown to efficiently pump lasing in Ne-like and Ni-like ions. For the 75 ps pumping, X-ray laser output without travelling wave pumping is shown to be well-described by a model of ASE output. With I ps pumping, the X-ray laser output with different velocity travelling wave pumping is well-fitted with an extension to the ASE model allowing for travelling wave excitation of the gain along the plasma line. The model is used to investigate the production of short (<1 ps) x-ray laser pulses and the effects of non-ideal travelling wave velocities on the X-ray laser output. Resonance line spectra of emission perpendicular to the plasma line are measured and simulated. It is shown that an accurate opacity model for the more intense Ne-like ions is needed to correctly simulate the spectra.
Resumo:
The collisionally excited transient inversion scheme is shown to produce exceptionally high gain coefficients and gain-length products. Data are presented for the Ne-Like titanium and germanium and Ni-like silver X-ray lasers (XRL's) pumped using a combination of nanosecond and picosecond duration laser pulses. This method leads to a dramatic reduction of the required pump energy and makes down-sizing of XRL's possible, an important prerequisite if they are to become commonly used tools in the Long-term.
Resumo:
A similar to 3 ps travelling wave chirped pulse amplified pulse at 6 x 10(14) W cm(-2) superimposed on similar to 300 ps background pulses is shown to be an efficient method to pump transient collisional excitation X-ray lasers in both Ni-like and Ne-like ions. Measurements of X-ray laser output as a function of plasma length are fitted with results of an amplified spontaneous emission model of the laser output taking account of travelling wave pumping effects. A small signal gain coefficient similar to 42 cm(-1) and a effective gain length product of similar to 18 are measured for the Ni-like Sn laser at 120 Angstrom. Simulations from a hydrodynamic and atomic physics code (EHYBRID) coupled to a ray trace code show that a spatially averaged small signal gain similar to 65 cm(-1) can be obtained in Ne-like Ge provided the optimum pumping pulse arrangement is used. (C) 1999 Elsevier Science B.V. All rights reserved.