10 resultados para Large detector-systems performance
Resumo:
Large scale wind power generation complicated with restrictions on the tie line plans may lead to significant wind power curtailment and deep cycling of coal units during the valley load periods. This study proposes a dispatch strategy for interconnected wind-coal intensive power systems (WCISs). Wind power curtailment and cycling of coal units are included in the economic dispatch analysis of regional systems. Based on the day-ahead dispatch results, a tie line power plan adjustment strategy is implemented in the event of wind power curtailment or deep cycling occurring in the economic dispatch model, with the objective of reducing such effects. The dispatch strategy is designed based on the distinctive operation characteristics of interconnected WCISs, and dispatch results for regional systems in China show that the proposed strategy is feasible and can improve the overall system operation performance.
Resumo:
The European Union continues to exert a large influence on the direction of member states energy policy. The 2020 targets for renewable energy integration have had significant impact on the operation of current power systems, forcing a rapid change from fossil fuel dominated systems to those with high levels of renewable power. Additionally, the overarching aim of an internal energy market throughout Europe has and will continue to place importance on multi-jurisdictional co-operation regarding energy supply. Combining these renewable energy and multi-jurisdictional supply goals results in a complicated multi-vector energy system, where the understanding of interactions between fossil fuels, renewable energy, interconnection and economic power system operation is increasingly important. This paper provides a novel and systematic methodology to fully understand the changing dynamics of interconnected energy systems from a gas and power perspective. A fully realistic unit commitment and economic dispatch model of the 2030 power systems in Great Britain and Ireland, combined with a representative gas transmission energy flow model is developed. The importance of multi-jurisdictional integrated energy system operation in one of the most strategically important renewable energy regions is demonstrated.
Resumo:
In this paper, we consider the uplink of a single-cell massive multiple-input multiple-output (MIMO) system with inphase and quadrature-phase imbalance (IQI). This scenario is of particular importance in massive MIMO systems, where the deployment of lower-cost, lower-quality components is desirable to make massive MIMO a viable technology. Particularly, we investigate the effect of IQI on the performance of massive MIMO employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that IQI can substantially downgrade the performance of MRC receivers. Moreover, a low-complexity IQI compensation scheme, suitable for massive MIMO, is proposed which is based on the IQI coefficients' estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic achievable rate and providing the asymptotic power scaling laws assuming transmission over Rayleigh fading channels with log-normal large-scale fading. Finally, we show that massive MIMO effectively suppresses the residual IQI effects, as long as, the compensation scheme is applied.
Resumo:
This work studies the uplink of a cellular network with zero-forcing (ZF) receivers under imperfect channel state information at the base station. More specifically, apart from the pilot contamination, we investigate the effect of time variation of the channel due to the relative users' movement with regard to the base station. Our contributions include analytical expressions for the sum-rate with finite number of BS antennas, and also the asymptotic limits with infinite power and number of BS antennas, respectively. The numerical results provide interesting insights on how the user mobility degrades the system performance which extends previous results in the literature.
Resumo:
Large-scale multiple-input multiple-output (MIMO) communication systems can bring substantial improvement in spectral efficiency and/or energy efficiency, due to the excessive degrees-of-freedom and huge array gain. However, large-scale MIMO is expected to deploy lower-cost radio frequency (RF) components, which are particularly prone to hardware impairments. Unfortunately, compensation schemes are not able to remove the impact of hardware impairments completely, such that a certain amount of residual impairments always exists. In this paper, we investigate the impact of residual transmit RF impairments (RTRI) on the spectral and energy efficiency of training-based point-to-point large-scale MIMO systems, and seek to determine the optimal training length and number of antennas which maximize the energy efficiency. We derive deterministic equivalents of the signal-to-noise-and-interference ratio (SINR) with zero-forcing (ZF) receivers, as well as the corresponding spectral and energy efficiency, which are shown to be accurate even for small number of antennas. Through an iterative sequential optimization, we find that the optimal training length of systems with RTRI can be smaller compared to ideal hardware systems in the moderate SNR regime, while larger in the high SNR regime. Moreover, it is observed that RTRI can significantly decrease the optimal number of transmit and receive antennas.
Resumo:
Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.