22 resultados para K1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Employing Bak’s dimension theory, we investigate the nonstable quadratic K-group K1,2n(A, ) = G2n(A, )/E2n(A, ), n 3, where G2n(A, ) denotes the general quadratic group of rank n over a form ring (A, ) and E2n(A, ) its elementary subgroup. Considering form rings as a category with dimension in the sense of Bak, we obtain a dimension filtration G2n(A, ) G2n0(A, ) G2n1(A, ) E2n(A, ) of the general quadratic group G2n(A, ) such that G2n(A, )/G2n0(A, ) is Abelian, G2n0(A, ) G2n1(A, ) is a descending central series, and G2nd(A)(A, ) = E2n(A, ) whenever d(A) = (Bass–Serre dimension of A) is finite. In particular K1,2n(A, ) is solvable when d(A) <.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Let F be a reduced irreducible root system and R be a commutative ring. Further, let G(F,R) be a Chevalley group of type F over R and E(F,R) be its elementary subgroup. We prove that if the rank of F is at least 2 and the Bass-Serre dimension of R is finite, then the quotient G(F,R)/E(F,R) is nilpotent by abelian. In particular, when G(F,R) is simply connected the quotient K1(F,R)=G(F,R)/E(F,R) is nilpotent. This result was previously established by Bak for the series A1 and by Hazrat for C1 and D1. As in the above papers we use the localisation-completion method of Bak, with some technical simplifications.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous studies the authors cloned and characterized the DNA sequence of the regions at both ends of the O7-specific lipopolysaccharide (LPS) biosynthesis cluster of Escherichia coli VW187 (O7:K1), and identified the biosynthetic genes for dTDP-rhamnose and GDP-mannose, as well as one of the candidate glycosyltransferases. In this work the complete DNA sequence of a 6.9 kb intervening region is presented. Seven new ORFs were identified. All the functions required for the synthesis and transfer of the O7 LPS were assigned on the basis of complementation experiments of transposon insertion mutants, and amino acid sequence homology to proteins involved in LPS synthesis of other bacteria. Of the seven ORFs, two encoded membrane proteins that were homologous to the O-antigen translocase (Wzx) and polymerase (Wxy), two were involved in the biosynthesis of dTDP-N-acetylviosamine, and the remaining three showed homologies to sugar transferases. The O antigen chain length regulator gene wzz was also identified in the vicinity of the O7 polysaccharide cluster. O7-specific DNA primers were designed and tested for serotyping of O7 E. coli strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O-repeating unit of the Escherichia coli O7-specific lipopolysaccharide is made of galactose, mannose, rhamnose, 4-acetamido-4,6-dideoxyglucose, and N-acetyglucosamine. We have recently characterized the genes involved in the biosynthesis of the sugar precursor GDP-mannose occurring in the E. coli O7:K1 strain VW187 (C. L. Marolda and M. A. Valvano, J. Bacteriol. 175:148-158, 1993). In the present study, we identified and sequenced the rfbBDAC genes encoding the enzymes for the biosynthesis of another precursor, dTDP-rhamnose. These genes are localized on the upstream end of the rfbEcO7 region, and they are strongly conserved compared with similar genes found in various enteric and nonenteric bacteria. Upstream of rfbB we identified a DNA segment containing the rfb promoter and a highly conserved untranslated leader sequence also present in the promoter regions of other surface polysaccharide gene clusters. Also, we have determined that rfbB and rfbA have homologs, rffG (o355) and rffH (o292), respectively, located on the rff cluster, which is involved in the synthesis of enterobacterial common antigen. We provide biochemical evidence that rffG and rffH encode dTDP-glucose dehydratase and glucose-1-phosphate thymidylyltransferase activities, respectively, and we also show that rffG complemented the rfbB defect in the O7+ cosmid pJHCV32. We also demonstrate that rffG is distinct from rffE and map the rffE gene to the second gene of the rff cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O7-specific lipopolysaccharide (LPS) in strains of Escherichia coli consists of a repeating unit made of galactose, mannose, rhamnose, 4-acetamido-2,6-dideoxyglucose, and N-acetylglucosamine. We have recently cloned and characterized genetically the O7-specific LPS biosynthesis region (rfbEcO7) of the E. coli O7:K1 strain VW187 (C. L. Marolda, J. Welsh, L. Dafoe, and M. A. Valvano, J. Bacteriol. 172:3590-3599, 1990). In this study, we localized the gnd gene encoding gluconate-6-phosphate dehydrogenase at one end of the rfbEcO7 gene cluster and sequenced that end of the cluster. Three open reading frames (ORF) encoding polypeptides of 275, 464, and 453 amino acids were identified upstream of gndEcO7, all transcribed toward the gnd gene. ORF275 had 45% similarity at the protein level with ORF16.5, which occupies a similar position in the Salmonella enterica LT2 rfb region, and presumably encodes a nucleotide sugar transferase. The polypeptides encoded by ORFs 464 and 453 were expressed under the control of the ptac promoter and visualized in Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels and by maxicell analysis. ORF464 expressed GDP-mannose pyrophosphorylase and ORF453 encoded a phosphomannomutase, the enzymes for the biosynthesis pathway of GDP-mannose, one of the nucleotide sugar precursors for the formation of the O7 repeating unit. They were designated rfbMEcO7 and rfbKEcO7, respectively. The RfbMEcO7 polypeptide was homologous to the corresponding protein in S. enterica LT2, XanB of Xanthomonas campestris, and AlgA of Pseudomonas aeruginosa, all GDP-mannose pyrophosphorylases. RfbKEcO7 was very similar to CpsG of S. enterica LT2, an enzyme presumably involved in the biosynthesis of the capsular polysaccharide colanic acid, but quite different from the corresponding RfbK protein of S. enterica LT2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O-specific lipopolysaccharide side chains of Escherichia coli O7 and Shigella boydii type 12 possess similar but not identical chemical structures. We investigated the genetic relatedness between the O-specific side chain genes in members of these two species. Examination of outer membrane protein and lipopolysaccharide (LPS) banding patterns demonstrated that five strains which had been identified as S. boydii type 12 fell into two clonal groups, SB1 and SB2. Hybridizations with O7-specific radiolabeled probes derived from the chromosomal DNA of an E. coli O7 strain detected identical fragments among the three SB1 strains of S. boydii type 12 and the two E. coli O7 reference isolates. The two other S. boydii type 12 strains, which belonged to the SB2 clone, did not show homologies with the O7 probe under high-stringency conditions of hybridization. The homology between the O7 and type 12 LPS gene regions from the SB1 strains was further confirmed by the construction of O-specific side chain-deficient mutations in these strains by homologous recombination of a suicide plasmid containing O7-specific DNA sequences. Immunoblot experiments with O7 antiserum gave a weak cross-reaction with LPS purified from the SB2 strains but a very strong cross-reaction with the LPS from SB1 isolates. Antiserum raised to one of the SB2 strains cross-reacted only with S. boydii type 12 LPS from the SB1 clone but failed to react with O7 LPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently cloned biosynthesis genes for the O7-lipopolysaccharide (O7-LPS) side chain from the Escherichia coli K-1 strain VW187 (M. A. Valvano, and J. H. Crosa, Infect. Immun. 57:937-943, 1989). To characterize the O7-LPS region, the recombinant cosmids pJHCV31 and pJHCV32 were mutagenized by transposon mutagenesis with Tn3HoHo1, which carries a promoterless lac operon and can therefore generate lacZ transcriptional fusions with target DNA sequences. Cells containing mutated plasmids were examined for their ability to react by coagglutination with O7 antiserum. The LPS pattern profiles of the insertion mutants were also investigated by electrophoresis of cell envelope fractions, followed by silver staining and immunoblotting analysis. These experiments identified three phenotypic classes of mutants and defined a region in the cloned DNA of about 14 kilobase pairs that is essential for O7-LPS expression. Analysis of beta-galactosidase production by cells carrying plasmids with transposon insertions indicated that transcription occurs in only one direction along the O7-LPS region. In vitro transcription-translation experiments revealed that the O7-LPS region encodes at least 16 polypeptides with molecular masses ranging from 20 to 48 kilodaltons. Also, the O7-LPS region in VW187 was mutagenized by homologous recombination with subsets of the cloned O7-LPS genes subcloned into a suicide plasmid vector. O7-LPS-deficient mutants of VW187 were complemented with pJHCV31 and pJHCV32, confirming that these cosmids contain genetic information that is essential for the expression of the O7 polysaccharide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have cloned and studied the expression in Escherichia coli K-12 of chromosomal rfb genes determining the biosynthesis of the O7 lipopolysaccharide (LPS) antigen from E. coli K1 strain VW187. Two E. coli K-12 strains carrying recombinant cosmids gave positive coagglutination reactions with protein A-rich staphylococcal particles bearing an O7-specific rabbit polyclonal antiserum. Silver-stained polyacrylamide gels of total membranes extracted with hot phenol showed O side chain material which had O7 specificity as determined by immunoblotting experiments. However, the amount of O7 LPS expressed in E. coli K-12 was considerably lower than that produced by the wild-type strain VW187. Deletion and transposition experiments identified a region of about 17 kilobase pairs which is essential for the expression of O7 LPS. The existence of homologies between the O7 LPS genes and other E. coli O side chain genes was investigated by Southern blot hybridization experiments. An O7-specific probe fragment of 15 kilobase pairs did not hybridize to genomic DNA digests of E. coli strains belonging to several different O types, demonstrating that the O7 LPS genes are unique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have cloned chromosomal genes determining the aerobactin iron transport system from the Escherichia coli K1 strain VW187. Mapping and hybridization experiments showed that the VW187 aerobactin region was identical to that of the plasmid ColV-K30. However, in the E. coli K-12 background, the biosynthesis of both siderophore and ferric aerobactin receptor encoded by the VW187-derived recombinant plasmids was not repressed by iron to the same extent found when a recombinant plasmid derived from pColV-K30 was used. RNA-DNA dot-blot hybridization experiments demonstrated that the aerobactin-specific mRNA synthesized by the VW187-derived clones was not iron regulated in E. coli K-12. In contrast, the synthesis of aerobactin and its receptor in strain VW187 was completely repressed by iron regardless of whether the recombinant plasmids originated from VW187 or pColV-K30. Similar results were obtained with gene fusions in which a promoterless lac operon was placed under the control of aerobactin promoter regions of either chromosome- or plasmid-mediated aerobactin systems. DNA sequencing of the chromosomal aerobactin promoter region showed changes in bases located immediately upstream to the -35 region compared with the corresponding region in pColV-K30, which is known to be part of the binding site for the Fur repressor protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidence of the aerobactin system and the genetic location of aerobactin genes were investigated in Escherichia coli K1 neonatal isolates belonging to different clonal groups. A functional aerobactin system was found in all members of the O7 MP3, O1 MP5, O1 MP9, and O18 MP9 clonal groups examined and also in K1 strains having O6, O16, and O75 lipopolysaccharide types, which are less frequently associated with neonatal infections. In contrast, the aerobactin system was not detected in strains from the O18 MP6 clone. The combined results of plasmid and colony hybridization experiments showed that the aerobactin genes were located on the chromosome in the majority (75%) of the aerobactin-producing K1 isolates, the genetic location of the aerobactin genes was closely correlated with the outer membrane protein profile rather than the O lipopolysaccharide type, the K1 strains harboring a chromosome-mediated aerobactin system did not possess colicin V genes, and five of six K1 isolates possessing a plasmid-borne aerobactin system contained colicin V genes which were located on the same plasmids carrying the aerobactin genes. The comparison of hemolysin production with possession of the aerobactin system in virulent clones of E. coli K1 strains showed that all of the aerobactin-producing strains from the O18 MP9 and O7 MP3 clonal groups did not synthesize hemolysin, whereas 11 of 12 aerobactin-nonproducing O18 MP6 isolates were hemolytic. Of the K1 strains examined, 92.5% possessed either the aerobactin system or the ability to produce hemolysin or both.