30 resultados para Itch ligase
Resumo:
Background: DNA ligases catalyse phosphodiester bond formation between adjacent bases in nicked DNA, thereby sealing the nick. A key step in the catalytic mechanism is the formation of an adenylated DNA intermediate. The adenyl group is derived from either ATP (in eucaryotes and archaea) or NAD+4 (in bacteria). This difference in cofactor specificity suggests that DNA ligase may be a useful antibiotic target.
Results: The crystal structure of the adenylation domain of the NAD+-dependent DNA ligase from Bacillus stearothermophilus has been determined at 2.8 Å resolution. Despite a complete lack of detectable sequence similarity, the fold of the central core of this domain shares homology with the equivalent region of ATP-dependent DNA ligases, providing strong evidence for the location of the NAD+-binding site.
Conclusions: Comparison of the structure of the NAD+4-dependent DNA ligase with that of ATP-dependent ligases and mRNA-capping enzymes demonstrates the manifold utilisation of a conserved nucleotidyltransferase domain within this family of enzymes. Whilst this conserved core domain retains a common mode of nucleotide binding and activation, it is the additional domains at the N terminus and/or the C terminus that provide the alternative specificities and functionalities in the different members of this enzyme superfamily.
Resumo:
Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants. RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines.
Resumo:
WaaL is a membrane enzyme that catalyzes a key step in lipopolysaccharide (LPS) synthesis: the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP) O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). Utilizing an in vitro assay, we demonstrate here that ligation with purified Escherichia coli WaaL occurs without adenosine-5'-triphosphate (ATP) and magnesium ions. Furthermore, E. coli and Pseudomonas aeruginosa WaaL proteins cannot catalyze ATP hydrolysis in vitro. We also show that a lysine substitution of the arginine (Arg)-215 residue renders an active protein, whereas WaaL mutants with alanine replacements in the periplasmic-exposed residues Arg-215, Arg-288 and histidine (His)-338 and also the membrane-embedded aspartic acid-389 are nonfunctional. An in silico approach, combining predicted topological information with the analysis of sequence conservation, confirms the importance of a positive charge at the small periplasmic loop of WaaL, since an Arg corresponding to Arg-215 was found at a similar position in all the WaaL homologs. Also, a universally conserved H[NSQ]X(9)GXX[GTY] motif spanning the C-terminal end of the predicted large periplasmic loop and the membrane boundary of the transmembrane helix was identified. The His residue in this motif corresponds to His-338. A survey of LPS structures in which the linkage between O-antigen and lipid A-core OS was elucidated reveals that it is always in the beta-configuration, whereas the sugars bound to Und-PP are in the alpha-configuration. Together, our biochemical and in silico data argue that WaaL proteins use a common reaction mechanism and share features of metal ion-independent inverting glycosyltransferases.
Functional analysis of the large periplasmic loop of the Escherichia coli K-12 WaaL O-antigen ligase
Resumo:
WaaL is a membrane enzyme implicated in ligating undecaprenyl-diphosphate (Und-PP)-linked O antigen to lipid A-core oligosaccharide. We determined the periplasmic location of a large (EL5) and small (EL4) adjacent loops in the Escherichia coli K-12 WaaL. Structural models of the EL5 from the K-12, R1 and R4 E. coli ligases were generated by molecular dynamics. Despite the poor amino acid sequence conservation among these proteins, the models afforded similar folds consisting of two pairs of almost perpendicular alpha-helices. One alpha-helix in each pair contributes a histidine and an arginine facing each other, which are highly conserved in WaaL homologues. Mutations in either residue rendered WaaL non-functional, since mutant proteins were unable to restore O antigen surface expression. Replacements of residues located away from the putative catalytic centre and non-conserved residues within the centre itself did not affect ligation. Furthermore, replacing a highly conserved arginine in EL4 with various amino acids inactivates WaaL function, but functionality reappears when the positive charge is restored by a replacement with lysine. These results lead us to propose that the conserved amino acids in the two adjacent periplasmic loops could interact with Und-PP, which is the common component in all WaaL substrates.
Resumo:
WaaL is a membrane enzyme that catalyzes the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP)-O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). This is a critical step in lipopolysaccharide synthesis. We describe here an assay to perform the ligation reaction in vitro utilizing native substrates.
Resumo:
Xie and colleagues previously isolated the Arabidopsis COI1 gene that is required for response to jasmonates (JAs), which regulate root growth, pollen fertility, wound healing, and defense against insects and pathogens. In this study, we demonstrate that COI1 associates physically with AtCUL1, AtRbx1, and either of the Arabidopsis Skp1-like proteins ASK1 or ASK2 to assemble ubiquitin-ligase complexes, which we have designated SCF(COI1). COI1(E22A), a single amino acid substitution in the F-box motif of COI1, abolishes the formation of the SCF(COI1) complexes and results in loss of the JA response. AtRbx1 double-stranded RNA-mediated genetic interference reduces AtRbx1 expression and affects JA-inducible gene expression. Furthermore, we show that the AtCUL1 component of SCF(COI1) complexes is modified in planta, where mutations in AXR1 decrease the abundance of the modified AtCUL1 of SCF(COI1) and lead to a reduction in JA response. Finally, we demonstrate that the axr1 and coi1 mutations display a synergistic genetic interaction in the double mutant. These results suggest that the COI1-mediated JA response is dependent on the SCF(COI1) complexes in Arabidopsis and that the AXR1-dependent modification of the AtCUL1 subunit of SCF(COI1) complexes is important for JA signaling.
Resumo:
Diet-induced obesity can induce low-level inflammation and insulin resistance. Interleukin-1β (IL-1β) is one of the key proinflammatory cytokines that contributes to the generation of insulin resistance and diabetes, but the mechanisms that regulate obesity-driven inflammation are ill defined. Here we found reduced expression of the E3 ubiquitin ligase Pellino3 in human abdominal adipose tissue from obese subjects and in adipose tissue of mice fed a high-fat diet and showing signs of insulin resistance. Pellino3-deficient mice demonstrated exacerbated high-fat-diet-induced inflammation, IL-1β expression, and insulin resistance. Mechanistically, Pellino3 negatively regulated TNF receptor associated 6 (TRAF6)-mediated ubiquitination and stabilization of hypoxia-inducible factor 1α (HIF1α), resulting in reduced HIF1α-induced expression of IL-1β. Our studies identify a regulatory mechanism controlling diet-induced insulin resistance by highlighting a critical role for Pellino3 in regulating IL-1β expression with implications for diseases like type 2 diabetes.
Resumo:
An early and critical event in beta2 integrin signalling during neutrophil adhesion is activation of Src tyrosine kinases and Syk. In the present study, we report Src kinase-dependent beta2 integrin-induced tyrosine phosphorylation of Cbl occurring in parallel with increased Cbl-associated tyrosine kinase activity. These events concurred with activation of Fgr and, surprisingly, also with dissociation of this Src tyrosine kinase from Cbl. Moreover, the presence of the Src kinase inhibitor PP1 in an in vitro assay had only a limited effect on the Cbl-associated kinase activity. These results suggest that an additional active Src-dependent tyrosine kinase associates with Cbl. The following observations imply that Syk is such a kinase: (i) beta2 integrins activated Syk in a Src-dependent manner, (ii) Syk was associated with Cbl much longer than Fgr was, and (iii) the Syk inhibitor piceatannol (3,4,3´,5´-tetrahydroxy-trans-stilbene) abolished the Cbl-associated kinase activity in an in vitro assay. Effects of the mentioned interactions between these two kinases and Cbl may be related to the finding that Cbl is a ubiquitin E3 ligase. Indeed, we detected beta2 integrin-induced ubiquitination of Fgr that, similar to the phosphorylation of Cbl, was abolished in cells pretreated with PP1. However, the ubiquitination of Fgr did not cause any apparent degradation of the protein. In contrast with Fgr, Syk was not modified by the E3 ligase. Thus Cbl appears to be essential in beta2 integrin signalling, first by serving as a matrix for a subsequent agonist-induced signalling interaction between Fgr and Syk, and then by mediating ubiquitination of Fgr which possibly affects its interaction with Cbl.
Resumo:
Cytokine responses can be regulated by a family of proteins termed suppressors of cytokine signaling (SOCS) which can inhibit the JAK/STAT pathway in a classical negative-feedback manner. While the SOCS are thought to target signaling intermediates for degradation, relatively little is known about how their turnover is regulated. Unlike other SOCS family members, we find that SOCS2 can enhance interleukin-2 (IL-2)- and IL-3-induced STAT phosphorylation following and potentiate proliferation in response to cytokine stimulation. As a clear mechanism for these effects, we demonstrate that expression of SOCS2 results in marked proteasome-dependent reduction of SOCS3 and SOCS1 protein expression. Furthermore, we provide evidence that this degradation is dependent on the presence of an intact SOCS box and that the loss of SOCS3 is enhanced by coexpression of elongin B/C. This suggests that SOCS2 can bind to SOCS3 and elongin B/C to form an E3 ligase complex resulting in the degradation of SOCS3. Therefore, SOCS2 can enhance cytokine responses by accelerating proteasome-dependent turnover of SOCS3, suggesting a mechanism for the gigantism observed in SOCS2 transgenic mice.
Resumo:
CD33 is a member of the sialic acid–binding immunoglobulin-like lectin (Siglec) family of inhibitory receptors and a therapeutic target for acute myeloid leukemia (AML). CD33 contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM), which can recruit SHP-1 and SHP-2. How CD33 expression is regulated is unclear. Suppressor of cytokine signaling 3 (SOCS3) is expressed in response to cytokines, LPS, and other PAMPs, and competes with SHP-1/2 binding to ITIMs of cytokine receptors, thereby inhibiting signaling. In this study, using peptide pull-down experiments, we found that SOCS3 can specifically bind to the phosphorylated ITIM of CD33. Additionally, following cross-linking SOCS3 can recruit the ECS E3 ligase resulting in accelerated proteasomal degradation of both CD33 and SOCS3. Our data suggest that the tyrosine motifs in CD33 are not important for internalization, while they are required for degradation. Moreover, SOCS3 inhibited the CD33-induced block on cytokine-induced proliferation. This is the first receptor shown to be degraded by SOCS3 and where SOCS3 and its target protein are degraded concomitantly. Our findings clearly suggest that during an inflammatory response, the inhibitory receptor CD33 is lost by this mechanism. Moreover, this has important clinical implications as tumors expressing SOCS3 may be refractory to -CD33 therapy.
Resumo:
CD33-related Siglecs (sialic acid-binding immunoglobulin-like lectins) 5–11 are inhibitory receptors that contain a membrane proximal ITIM (immunoreceptor tyrosine-based inhibitory motif) (I/V/L/)XYXX(L/V), which can recruit SHP-1/2. However, little is known about the regulation of these receptors. SOCS3 (suppressor of cytokine signaling 3) is up-regulated during inflammation and competes with SHP-1/2 for binding to ITIM-like motifs on various cytokine receptors resulting in inhibition of signaling. We show that SOCS3 binds the phosphorylated ITIM of Siglec 7 and targets it for proteasomal-mediated degradation, suggesting that Siglec 7 is a novel SOCS target. Following ligation, the ECS E3 ligase is recruited by SOCS3 to target Siglec 7 for proteasomal degradation, and SOCS3 expression is decreased concomitantly. In addition, we found that SOCS3 expression blocks Siglec 7-mediated inhibition of cytokine-induced proliferation. This is the first time that a SOCS target has been reported to degrade simultaneously with the SOCS protein and that inhibitory receptors have been shown to be degraded in this way. This may be a mechanism by which the inflammatory response is potentiated during infection.