173 resultados para Industrial and Manufacturing Engineering
Resumo:
This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this paper NOx emissions modelling for real-time operation and control of a 200 MWe coal-fired power generation plant is studied. Three model types are compared. For the first model the fundamentals governing the NOx formation mechanisms and a system identification technique are used to develop a grey-box model. Then a linear AutoRegressive model with eXogenous inputs (ARX) model and a non-linear ARX model (NARX) are built. Operation plant data is used for modelling and validation. Model cross-validation tests show that the developed grey-box model is able to consistently produce better overall long-term prediction performance than the other two models.
Resumo:
The work presented is concerned with the estimation of manufacturing cost at the concept design stage, when little technical information is readily available. The work focuses on the nose cowl sections of a wide range of engine nacelles built at Bombardier Aerospace Shorts of Belfast. A core methodology is presented that: defines manufacturing cost elements that are prominent; utilises technical parameters that are highly influential in generating those costs; establishes the linkage between these two; and builds the associated cost estimating relations into models. The methodology is readily adapted to deal with both the early and more mature conceptual design phases, which thereby highlights the generic, flexible and fundamental nature of the method. The early concept cost model simplifies cost as a cumulative element that can be estimated using higher level complexity ratings, while the mature concept cost model breaks manufacturing cost down into a number of constituents that are each driven by their own specific drivers. Both methodologies have an average error of less that ten percent when correlated with actual findings, thus achieving an acceptable level of accuracy. By way of validity and application, the research is firmly based on industrial case studies and practice and addresses the integration of design and manufacture through cost. The main contribution of the paper is the cost modelling methodology. The elemental modelling of the cost breakdown structure through materials, part fabrication, assembly and their associated drivers is relevant to the analytical design procedure, as it utilises design definition and complexity that is understood by engineers.