7 resultados para Hunter, Charles G.
Resumo:
Rheumatic heart disease (RHD) is the largest cardiac cause of morbidity and mortality in the world's youth. Early detection of RHD through echocardiographic screening in asymptomatic children may identify an early stage of disease, when secondary prophylaxis has the greatest chance of stopping disease progression. Latent RHD signifies echocardiographic evidence of RHD with no known history of acute rheumatic fever and no clinical symptoms.
OBJECTIVE: Determine the prevalence of latent RHD among children ages 5-16 in Lilongwe, Malawi.
DESIGN: This is a cross-sectional study in which children ages 5 through 16 were screened for RHD using echocardiography.
SETTING: Screening was conducted in 3 schools and surrounding communities in the Lilongwe district of Malawi between February and April 2014.
OUTCOME MEASURES: Children were diagnosed as having no, borderline, or definite RHD as defined by World Heart Federation criteria. The primary reader completed offline reads of all studies. A second reader reviewed all of the studies diagnosed as RHD, plus a selection of normal studies. A third reader served as tiebreaker for discordant diagnoses. The distribution of results was compared between gender, location, and age categories using Fisher's exact test.
RESULTS: The prevalence of latent RHD was 3.4% (95% CI = 2.45, 4.31), with 0.7% definite RHD and 2.7% borderline RHD. There was no significant differences in prevalence between gender (P = .44), site (P = .6), urban vs. peri-urban (P = .75), or age (P = .79). Of those with definite RHD, all were diagnosed because of pathologic mitral regurgitation (MR) and 2 morphologic features of the mitral valve. Of those with borderline RHD, most met the criteria by having pathological MR (92.3%).
CONCLUSION: Malawi has a high rate of latent RHD, which is consistent with other results from sub-Saharan Africa. This study strongly supports the need for a RHD prevention and control program in Malawi.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated 1/42,000, 1/43,700 and 1/49,500 SNPs explained 1/421%, 1/424% and 1/429% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/I 2-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.