18 resultados para Howes. Lorne
Resumo:
A practical asymmetric synthesis of a highly substituted N-acylpyrrolidine on multi-kilogram scale is described. The key step in the construction of the three stereocenters is a [3+2] cycloaddition of methyl acrylate and an imino ester prepared from L-leucine t-butyl ester hydrochloride and 2-thiazolecarboxaldehyde. The cycloaddition features novel asymmetric catalysis via a complex of silver acetate and a cinchona alkaloid, particularly hydroquinine, with complete diastereomeric control and up to 87% enantiomeric control. The alkaloid serves as a ligand as well as a base for the formation of the azomethine ylide or 1,3-dipole. Experiments have shown that the hydroxyl group of hydroquinine is a critical element for the enantioselectivities observed. The cycloaddition methodology is also applicable to methylvinyl ketone, providing access to either alpha- or beta-epimers of 4-acetylpyrrolidine depending on the reaction conditions utilized. The synthesis also highlights an efficient N-acylation, selective O- versus N-methylation, and a unique ester reduction with NaBH4-MeOH catalyzed by NaB(OAc)(3)H that not only achieves excellent chemoselectivity but also avoids formation of the undesired but thermodynamically favored epimer. The highly functionalized target is synthesized in seven linear steps from L-leucine t-butyl ester hydrochloride with all three isolated intermediates being highly crystalline.
Resumo:
Optimization of a pyrrolidine-based template using structure-based design and physicochemical considerations has provided a development candidate 20b (3082) with submicromolar potency in the HCV replicon and good pharmacokinetic properties.
Resumo:
Hepatitis C is an infection of the liver caused by a pos. single-stranded RNA virus (HCV) which affects 170 million people worldwide. It is responsible for 40-60% of all liver disease and is the major cause of liver transplants in the United States. The HCV NS5B gene encodes the viral RNA-dependent RNA polymerase which is essential for HCV replication. We have previously reported the identification of acylpyrrolidines as potent inhibitors of NS5B; however their activity is attenuated against genotype 1a. The design of improved broader-spectrum compds., capable of effective inhibition of both genotypes 1b and 1a is desirable. An understanding of the binding site and genotype sequence differences was utilized to design compds. with greatly enhanced genotype 1a and 1b potency. Our studies led to the identification of GSK625433, a potent, homochiral inhibitor of these HCV genotypes in both enzyme and sub-genomic replicon cell-based assays. GSK625433 has a good pharmacokinetic profile in pre-clin. animal species, enabling progression to clin. evaluation.