49 resultados para Heavy-metal oxide glasses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perovskite phase instability of BiMnO3 has been exploited to synthesize epitaxial metal oxide magnetic nanocrystals. Thin film processing conditions are tuned to promote the breakdown of the perovskite precursor into Bi2O3 matrix and magnetic manganese oxide islands. Subsequent cooling in vacuum ensures complete volatization of the Bi2O3, thus leaving behind an array of self-assembled magnetic Mn3O4 nanostructures. Both shape and size can be systematically controlled by the ambient oxygen environments and deposition time.As such, this approach can be extended to any other Bi-based complex ternary oxide system as it primarily hinges on the breakdown of parent Bi-based precursor and subsequent Bi2O3 volatization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a major review work on ground water remediation since the earlier work of Mulligan et al published in 2001 in Engineering Geology Journal. This work resulted from the joint research project of QUB and University of Malaya on iron removal from groundwater for public water supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freestanding films containing nanocrystalline TiO2 and a suitable electron donor embedded in a cellulose matrix deoxygenate a closed environment (see Figure) upon UV illumination as a result of the photocatalytic properties of TiO2. This opens up the potential use of semiconductor photocatalysis in active packaging to achieve light-driven deoxygenation of closed environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (X10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.