73 resultados para Heat exchangers.
Resumo:
The purpose of this study is to determine the influence of inclining the heat exchanger relative to the fan in a forced draught air-cooled heat exchanger. Since inclination increases plenum depth, the effect of inclination is also compared with increasing plenum depth without inclination. The experimental study shows that inclination improves thermal performance by only 0.5%, when compared with a baseline non-inclined case with a shallow plenum. Similarly, increasing plenum depth without inclination has a thermal performance benefit of approximately 1%. The numerical study shows that, as the heat exchanger is inclined, the low velocity core at the centre of the heat exchanger moves to one side. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study is to determine the influence of inclining the heat exchanger relative to the fan in a forced draught air-cooled heat exchanger. Since inclination increases plenum depth, the effect of inclination is also compared with increasing plenum depth without inclination. The experimental study shows that inclination improves thermal performance by only 0.5%, when compared with a baseline non-inclined case with a shallow plenum. Similarly, increasing plenum depth without inclination has a thermal performance benefit of approximately 1%. The numerical study shows that, as the heat exchanger is inclined, the low velocity core at the centre of the heat exchanger moves to one side.
Resumo:
Single-phase microreactors and micro-heat-exchangers have been widely used in industrial and scientific applications over the last decade. In several cases, operation of microreactors has shown that their expected efficiency cannot be reached either due to non-uniform distribution of reactants between different channels or due to flow maldistribution between individual microreactors working in parallel. The latter problem can result in substantial temperature deviations between different microreactors resulting in thermal run away which could arise from an exothermicreaction. Thus advances in the understanding of heat transfer and fluid flow distribution continue to be crucial in achieving improved performance, efficiency and safety in microstructured reactors used for different applications. This paper presents a review of the experimental and numerical results on fluid flow distribution, heat transfer and combination thereof, available in the open literature. Heat transfer in microchannels can be suitably described by standard theory and correlations, but scaling effects (entrance effects, conjugate heat transfer, viscous heating, and temperature-dependent properties) have often to be accounted for in microsystems. Experiments with single channels are in good agreement with predictions from the published correlations. The accuracy of multichannel experiments is lower due to flow maldistribution. Special attention is devoted to theoretical and experimental studies on the effect of a flow maldistribution on the thermal and conversion response of catalytic microreactors. There view concludes with a set of design recommendations aimed at improving the reactor performance. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Joule heat-induced hot-spot formation sets severe limits in the operation of continuous annular electrochromatography (CAEC), a new concept for preparative separation as an analog to analytical capillary electrochromatography (CEC). This may lead to eluent flow perturbance, even to boiling, which would massively weaken separation efficiency and may even hamper the stationary phase used for separation. For reasons of system integration and high-efficiency heat transfer, micro flow heat exchangers are considered with a separate coolant flow. A 3D numerical analysis of the heat transfer of water single-phase laminar flow in a square microchannel and different arrays of micro pin-fins was carried out using COMSOL Multiphysics. Several advanced materials with low electric conductivity and at the same time with high heat conductivity were put forward to be used in the CAEC system. As essential design point, it is proposed to constitute the micro heat exchanger from two different parts of the CAEC system, namely a microstructured pin-fins plate and a so-called conductive plate.
Resumo:
The performance of an air-cycle refrigeration unit for road transport, which had been previously reported, was analysed in detail and compared with the original design model and an equivalent Thermo King SL200 vapour-cycle refrigeration unit. Poor heat exchanger performance was found to be the major contributor to low coefficient of performance values. Using state-of-the-art, but achievable performance levels for turbomachinery and heat exchangers, the performance of an optimised air-cycle refrigeration unit for the same application was predicted. The power requirement of the optimised air-cycle unit was 7% greater than the equivalent vapour-cycle unit at full-load operation. However, at part-load operation the air-cycle unit was estimated to absorb 35% less power than the vapour-cycle unit. The analysis demonstrated that the air-cycle system could potentially match the overall fuel consumption of the vapour-cycle transport refrigeration unit, while delivering the benefit of a completely refrigerant free system.
Resumo:
This work examines analytically the forced convection in a channel partially filled with a porous material and subjected to constant wall heat flux. The Darcy–Brinkman–Forchheimer model is used to represent the fluid transport through the porous material. The local thermal non-equilibrium, two-equation model is further employed as the solid and fluid heat transport equations. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions, for the solid and fluid temperature fields, are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio and Darcy number as parameters. The results can be readily used to validate numerical simulations. They are, further, applicable to the analysis of enhanced heat transfer, using porous materials, in heat exchangers.