6 resultados para Game-based learning model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different types of serious games have been used in elucidating computer science areas such as computer games, mobile games, Lego-based games, virtual worlds and webbased games. Different evaluation techniques have been conducted like questionnaires, interviews, discussions and tests. Simulation have been widely used in computer science as a motivational and interactive learning tool. This paper aims to evaluate the possibility of successful implementation of simulation in computer programming modules. A framework is proposed to measure the impact of serious games on enhancing students understanding of key computer science concepts. Experiments will be held on the EEECS of Queen’s University Belfast students to test the framework and attain results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a structural engineer, effective communication and interaction with architects cannot be underestimated as a key skill to success throughout their professional career. Structural engineers and architects have to share a common language and understanding of each other in order to achieve the most desirable architectural and structural designs. This interaction and engagement develops during their professional career but needs to be nurtured during their undergraduate studies. The objective of this paper is to present the strategies employed to engage higher order thinking in structural engineering students in order to help them solve complex problem-based learning (PBL) design scenarios presented by architecture students. The strategies employed were applied in the experimental setting of an undergraduate module in structural engineering at Queen’s University Belfast in the UK. The strategies employed were active learning to engage with content knowledge, the use of physical conceptual structural models to reinforce key concepts and finally, reinforcing the need for hand sketching of ideas to promote higher order problem-solving. The strategies employed were evaluated through student survey, student feedback and module facilitator (this author) reflection. The strategies were qualitatively perceived by the tutor and quantitatively evaluated by students in a cross-sectional study to help interaction with the architecture students, aid interdisciplinary learning and help students creatively solve problems (through higher order thinking). The students clearly enjoyed this module and in particular interacting with structural engineering tutors and students from another discipline

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adjoint methods have proven to be an efficient way of calculating the gradient of an objective function with respect to a shape parameter for optimisation, with a computational cost nearly independent of the number of the design variables [1]. The approach in this paper links the adjoint surface sensitivities (gradient of objective function with respect to the surface movement) with the parametric design velocities (movement of the surface due to a CAD parameter perturbation) in order to compute the gradient of the objective function with respect to CAD variables.
For a successful implementation of shape optimization strategies in practical industrial cases, the choice of design variables or parameterisation scheme used for the model to be optimized plays a vital role. Where the goal is to base the optimization on a CAD model the choices are to use a NURBS geometry generated from CAD modelling software, where the position of the NURBS control points are the optimisation variables [2] or to use the feature based CAD model with all of the construction history to preserve the design intent [3]. The main advantage of using the feature based model is that the optimized model produced can be directly used for the downstream applications including manufacturing and process planning.
This paper presents an approach for optimization based on the feature based CAD model, which uses CAD parameters defining the features in the model geometry as the design variables. In order to capture the CAD surface movement with respect to the change in design variable, the “Parametric Design Velocity” is calculated, which is defined as the movement of the CAD model boundary in the normal direction due to a change in the parameter value.
The approach presented here for calculating the design velocities represents an advancement in terms of capability and robustness of that described by Robinson et al. [3]. The process can be easily integrated to most industrial optimisation workflows and is immune to the topology and labelling issues highlighted by other CAD based optimisation processes. It considers every continuous (“real value”) parameter type as an optimisation variable, and it can be adapted to work with any CAD modelling software, as long as it has an API which provides access to the values of the parameters which control the model shape and allows the model geometry to be exported. To calculate the movement of the boundary the methodology employs finite differences on the shape of the 3D CAD models before and after the parameter perturbation. The implementation procedure includes calculating the geometrical movement along a normal direction between two discrete representations of the original and perturbed geometry respectively. Parametric design velocities can then be directly linked with adjoint surface sensitivities to extract the gradients to use in a gradient-based optimization algorithm.
The optimisation of a flow optimisation problem is presented, in which the power dissipation of the flow in an automotive air duct is to be reduced by changing the parameters of the CAD geometry created in CATIA V5. The flow sensitivities are computed with the continuous adjoint method for a laminar and turbulent flow [4] and are combined with the parametric design velocities to compute the cost function gradients. A line-search algorithm is then used to update the design variables and proceed further with optimisation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of lecturing or large group teaching has been called into question for many years. An abundance of literature details the components of effective teaching which are not provided in the traditional lecture setting, with many alternative methods of teaching recommended. However, with continued constraints on resources large group teaching is here to stay and student’s expect and are familiar with this method.

Technology Enhanced Learning may be the way forward, to prevent educators from “throwing out the baby with the bath water”. TEL could help Educator’s especially in the area of life sciences which is often taught by lectures to engage and involve students in their learning, provide feedback and incorporate the “quality” of small group teaching, case studies and Enquiry Based Learning into the large group setting thus promoting effective and deep learning.