24 resultados para Future Technology


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increasing importance placed upon regional development and the knowledge-based economy as economic growth stimuli has led to a changing role for Universities and their interaction with the business community through (though not limited to) the transfer of technology from academia to industry. With the emergence of Local Enterprise Partnerships (LEPs) replacing the Regional Development Agencies (RDAs), there is a need for policy and practice going forward to be clearly informed by a critique of TTO (Technology Transfer Office)–RDA stakeholder relationship in a lessons learned approach so that LEPs can benefit from a faster learning curve. Thus, the aim of this paper is to examine the stakeholder relationship between three regional universities in the context of its TTO and the RDA with a view to determining lessons learned for the emerging LEP approach. Although the issues raised are contextual, the abstracted stakeholder conceptualisation of the TTO–RDA relationship should enable wider generalisation of the issues raised beyond the UK. Stakeholder theory relationship and stage development models are used to guide a repeat interview study of the TTO and RDA stakeholder groupings. The findings, interpreted using combined category and stage based stakeholder models, show how the longitudinal development of the TTO–RDA stakeholder relationship for each case has progressed through different stakeholder pathways, and stages where specific targeting of funding was dependant on the stakeholder stage. Greater targeted policy and funding, based on the stakeholder relationship approach, led to the development of joint mechanisms and a closer alignment of performance measures between the TTO and the RDA. However, over-reliance on the unitary nature of the TTO–RDA relationship may lead to a lack of cultivation and dependency for funding from other stakeholders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kidney transplantation is one of the most common transplantation operations in the world, accounting for up to 50 % of all transplantation surgeries. To curtail the damage to transplanted organs that is caused by ischemia-reperfusion injury and the recipient's immune system, small interfering RNA (siRNA) technology is being explored. Importantly, the kidney as a whole is a preferential site for non-specific systemic delivery of siRNA. To date, most attempts at siRNA-based therapy for transplantation-related conditions have remained at the in vitro stage, with only a few of them being advanced into animal models. Hydrodynamic intravenous injection of naked or carrier-bound siRNAs is currently the most common route for delivery of therapeutic constructs. To our knowledge, no systematic screens for siRNA targets most relevant for kidney transplantation have been attempted so far. A majority of researchers have arrived at one or another target of interest by analyzing current literature that dissects pathological processes taking place in transplanted organs. A majority of the genes that make up the list of 53 siRNA targets that have been tested in transplantation-related models so far belong to either apoptosis- or immune rejection-centered networks. There is an opportunity for therapeutic siRNA combinations that may be delivered within the same delivery vector or injected at the same time and, by targeting more than one pathway, or by hitting the same pathways within two different key points, will augment the effects of each other.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as vehicles for drug delivery, agents for photothermal therapy, image contrast and radiosensitisation. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early phase clinical trials. In particular the increasing preclinical evidence for gold nanoparticles as sensitizers with ionizing radiation in vitro and in vivo is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon-on-sapphire (SOS) substrates have been proven to offer significant advantages in the integration of passive and active devices in RF circuits. Germanium on insulator technology is a candidate for future higher performance circuits. Thus the advantages of employing a low loss dielectric substrate other than a silicon-dioxide layer on silicon will be even greater. This paper covers the production of germanium on sapphire (GeOS) substrates by wafer bonding. The quality of the germanium back interface is studied and a tungsten self-aligned gate process MOST process has been developed. High low field mobilities of 450-500 cm2/V-s have been achieved for p-channel MOSTs produced on GeOS substrates. Thick germanium on alumina (GOAL) substrates have also been produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, the classification systems for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) already incorporate cytogenetic and molecular genetic aberrations in an attempt to better reflect disease biology. However, in many MDS/AML patients no genetic aberrations have been identified yet, and even within some cytogenetically well-defined subclasses there is considerable clinical heterogeneity. Recent advances in genomics technologies such as gene expression profiling (GEP) provide powerful tools to further characterize myeloid malignancies at the molecular level, with the goal to refine the MDS/AML classification system, incorporating as yet unknown molecular genetic and epigenetic pathomechanisms, which are likely reflected by aberrant gene expression patterns. In this study, we provide a comprehensive review on how GEP has contributed to a refined molecular taxonomy of MDS and AML with regard to diagnosis, prediction of clinical outcome, discovery of novel subclasses and identification of novel therapeutic targets and novel drugs. As many challenges remain ahead, we discuss the pitfalls of this technology and its potential including future integrative studies with other genomics technologies, which will continue to improve our understanding of malignant transformation in myeloid malignancies and thereby contribute to individualized risk-adapted treatment strategies for MDS and AML patients. Leukemia (2011) 25, 909-920; doi:10.1038/leu.2011.48; published online 29 March 2011

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuing interest in semiconductor photochemistry, SPC, and the emergence of commercial products that utilise films of photocatalyst materials, has created an urgent need to agree a set of methods for assessing photocatalytic activity and international committees are now meeting to address this issue. This article provides a brief overview of two of the most popular current methods employed by researchers for assessing SPC activity. and one which has been published just recently and might gain popularity in the future, given its ease of use. These tests are: the stearic acid (SA) test, the methylene blue (MB) test and the resazurin (Rz) ink test, respectively. The basic photochemical and chemical processes that underpin each of these tests are described, along with typical results for laboratory made sol-gel titania films and a commercial form of self-cleaning glass, Activ (TM). The pros and cons of their future use as possible standard assessment techniques are considered. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. © 2012 Future Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the result of a project to develop climate adaptation design strategies funded by the UK’s Technology Strategy Board. The aim of the project was to look at the effects of climate change in the distant future (2080) on a vulnerable group such as older people with special needs and see how architectural design strategies and technologies may be used today to help mitigate problems ahead caused by climate change.
Older people are the most vulnerable sector of society and are particularly at risk in extreme weather, either excess cold in winter or continual high temperatures in summer. In the UK it is predicted that average temperatures may rise by as much as 8 degrees in Summer by 2080 and there will be a 20% greater chance of extreme weather events. This will place extreme stress on the building stock which is designed for today’s mild maritime climate.
The project took a current proposal for an extra-care home for the elderly designed to 2010 regulations and developed a road map to 2080 using climate models developed by the UK Meteorological Office. This allowed the current design to be assessed using future climatic data, proposals for improvement of the scheme to be made within existing constraints and also a new scheme to be developed from first principals using this data, and projections of new technologies that will be available. By comparing these schemes, the approach allowed a reassessment of the initial scheme, and allowed a new design to be developed that offered a more flexible solution incorporating future retrofit which allows new renewable technologies for heating, cooling and water storage to be added at a later date.