18 resultados para Frequency discriminating circuit
Resumo:
Power back-off performances of a new variant power-combining Class-E amplifier under different amplitude-modulation schemes such as continuous wave (CW), envelope elimination and restoration (EER), envelope tracking (ET) and outphasing are for the first time investigated in this study. Finite DC-feed inductances rather than massive RF chokes as used in the classic single-ended Class-E power amplifier (PA) resulted from the approximate yet effective frequency-domain circuit analysis provide the wherewithal to increase modulation bandwidth up to 80% higher than the classic single-ended Class-E PA. This increased modulation bandwidth is required for the linearity improvement in the EER/ET transmitters. The modified output load network of the power-combining Class-E amplifier adopting three-harmonic terminations technique relaxes the design specifications for the additional filtering block typically required at the output stage of the transmitter chain. Qualitative agreements between simulation and measurement results for all four schemes were achieved where the ET technique was proven superior to the other schemes. When the PA is used within the ET scheme, an increase of average drain efficiency of as high as 40% with respect to the CW excitation was obtained for a multi-carrier input signal with 12 dB peak-to-average power ratio. © 2011 The Institution of Engineering and Technology.
Resumo:
A simple circuit that is able to indicate if an injection-locked oscillator is in the locked condition by providing a ‘high’ or ‘low’ output is presented. The detector is compatible with most injection-locked oscillators as all that is required is access to the low-frequency bias circuit, with no direct access needed to the RF/microwave signals. To prove the universal nature of the lock detector it is successfully demonstrated practically for two scenarios: (i) a 1 GHz injection-locked VCO and (ii) a 60 GHz SiGe VCO MMIC.
Resumo:
This paper proposes a wideband equivalent circuit model for a twisted split ring frequency selective surface (FSS). Such surfaces can be used for modelling and design of polarisation sensitive surfaces such as circularly polarized selective surfaces as well as structures with asymmetric transmission. The proposed model is based extraction of equivalent circuit parameters from a single split ring (SRR) FSS and magnetic coupling from periodic eigenmode analysis of the coupled SRR. The resulting equivalent circuit model demonstrates excellent agreement with full-wave simulations.
Resumo:
In this brief, we propose a new Class-E frequency multiplier based on the recently introduced Series-L/Parallel-Tuned Class-E amplifier. The proposed circuit produces even-order output harmonics. Unlike previously reported solutions the proposed circuit can operate under 50% duty ratio which minimizes the conduction losses. The circuit also offers the possibility for increased maximum operating frequency, reduced peak switch voltage, higher load resistance and inherent bond wire absorption; all potentially useful in monolithic microwave integrated circuit implementations. In addition, the circuit topology suggested large transistors with high output capacitances can be deployed. Theoretical design equations are given and the predictions made using these are shown to agree with harmonic balance circuit simulation results.
Resumo:
Experimental results are presented to show how a planar circuit, printed on a laterally shielded dielectric waveguide, can induce and control the radiation from a leaky-mode. By studying the leaky-mode complex propagation constant, a desired radiation pattern can be synthesized, controlling the main radiation characteristics (pointing direction, beamwidth, sidelobes level) for a given frequency, This technique leads to very flexible and original leaky-wave antenna designs. The experiments show to be in very good agreement with the leaky-mode theory.
Resumo:
The concept of frequency steerable two-dimensional electromagnetic focusing by using a tapered leaky-wave line source embedded in a parallel-plate medium is presented. Accurate expressions for analyzing the focusing pattern of a rectilinear leaky-wave lens (LWL) from its constituent leaky-mode tapered propagation constant are described. The influence of the main LWL structural parameters on the synthesis of the focusing pattern is discussed. The ability to generate frequency steerable focusing patterns has been demonstrated by means of an example involving a LWL in hybrid waveguide printed-circuit technology and the results are validated by a commercial full-wave solver.
Resumo:
The present paper demonstrates the suitability of artificial neural network (ANN) for modelling of a FinFET in nano-circuit simulation. The FinFET used in this work is designed using careful engineering of source-drain extension, which simultaneously improves maximum frequency of oscillation f(max) because of lower gate to drain capacitance, and intrinsic gain A(V0) = g(m)/g(ds), due to lower output conductance g(ds). The framework for the ANN-based FinFET model is a common source equivalent circuit, where the dependence of intrinsic capacitances, resistances and dc drain current I-d on drain-source V-ds and gate-source V-gs is derived by a simple two-layered neural network architecture. All extrinsic components of the FinFET model are treated as bias independent. The model was implemented in a circuit simulator and verified by its ability to generate accurate response to excitations not used during training. The model was used to design a low-noise amplifier. At low power (J(ds) similar to 10 mu A/mu m) improvement was observed in both third-order-intercept IIP3 (similar to 10 dBm) and intrinsic gain A(V0) (similar to 20 dB), compared to a comparable bulk MOSFET with similar effective channel length. This is attributed to higher ratio of first-order to third-order derivative of I-d with respect to gate voltage and lower g(ds), in FinFET compared to bulk MOSFET. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
A study of the external, loaded and unloaded quality factors for frequency selective surfaces (FSSs) is presented. The study is focused on THz frequencies between 5 and 30 THz, where ohmic losses arising from the conductors become important. The influence of material properties, such as metal thickness, conductivity dispersion and surface roughness, is investigated. An equivalent circuit that models the FSS in the presence of ohmic losses is introduced and validated by means of full-wave results. Using both full-wave methods as well as a circuit model, the reactive energy stored in the vicinity of the FSS at resonance upon plane-wave incidence is presented. By studying a doubly periodic array of aluminium strips, it is revealed that the reactive power stored at resonance increases rapidly with increasing periodicity. Moreover, it is demonstrated that arrays with larger periodicity-and therefore less metallisation per unit area-exhibit stronger thermal absorption. Despite this absorption, arrays with higher periodicities produce higher unloaded quality factors. Finally, experimental results of a fabricated prototype operating at 14 THz are presented.
Resumo:
A novel Class-E power amplifier (PA) topology with transmission-line load network is presented in this brief. When compared with the classic Class-E topology, the new circuit can increase the maximum operating frequency up to 50% higher without trading the other Class-E figures of merit. Neither quarterwave line/massive radio-frequency choke for collector/drain biasing nor additional fundamental-frequency output matching circuit are needed in the proposed PA, thus resulting in a compact design. Closed-form formulations are derived and verified by simulations with practical design limitations carefully taken into consideration and good agreement achieved.
Resumo:
This paper proposes a substrate integrated waveguide
(SIW) cavity-based method that is compliant with
ground-signal–ground (GSG) probing technology for dielectric
characterization of printed circuit board materials at millimeter
wavelengths. This paper presents the theory necessary to retrieve
dielectric parameters from the resonant characteristics of SIW
cavities with particular attention placed on the coupling scheme
and means for obtaining the unloaded resonant frequency. Different
sets of samples are designed and measured to address the
influence of the manufacturing process on the method. Material
parameters are extracted at - and -band from measured data
with the effect of surface roughness of the circuit metallization
taken into account.
Resumo:
This invention relates to electronic circuit packages designed to hold high frequency circuits operating particularly, but not exclusively, in the microwave, millimeter wave, and sub-millimeter wave bands. The invention provides a package incorporating a cavity in a material for containment of the circuits, wherein the package further incorporates at least one conductive surface mounted on an inner surface extending into the cavity, the conductivity thereof being adapted to be at least partially absorbent to electromagnetic radiation. The conductive surface according to the present invention will tend to attenuate electromagnetic radiation present within the cavity, and so help to prevent undesired coupling from one point to another within the cavity. The conductivity of the conductive material is preferably arranged to match the impedance of the radiation mode estimated or computed to be present within the cavity.
Resumo:
A V-band wide tuning-range VCO and high frequency divide-by-8 frequency divider using Infineon 0.35 µm SiGe HBT process are presented in this paper. An LC impedance peaking technique is introduced in the Miller divider to increase the sensitivity and operation frequency range of the frequency divider. Two static frequency dividers implemented using current mode logic are used to realize dividing by 4 in the circuit. The wide tuning range VCO operates from 51.9 to 64.1 GHz i.e. 20.3% frequency tuning range. The measured phase noise at the frequency divider output stage is around -98.5 dBc at 1 MHz. The circuit consumes 200mW and operates from a 3.5Vdc supply, and occupies 0.6×0.8 mm2 die area.
Resumo:
This paper reports the first observation, using in situ FTIR spectroscopy, of the oxidation of CO adsorbates on the Ru(0001) electrode to CO under open circuit (oc) conditions in both perchloric acid and sulphuric acid solution at 20 and 55 °C. While the significant oc oxidation of the adsorbed CO on the Ru(0001) electrode was observed in perchloric acid solution, much less oc oxidation took place in sulfuric acid solution due to the specific adsorption of bisulfate at the Ru surface which inhibits the surface oxidation and reduces the reactivity of the surface towards the oxidation of CO . The oc oxidation of the CO depends strongly on the oxygen concentration in the solution and the temperature. The data so obtained are compared to those observed at the gas|solid interface, as well as to those obtained from the electro-oxidation of CO , and possible new catalytic oxidation reaction mechanisms are discussed. In addition, it is shown that the C-O frequency of the adsorbed CO may be used as an effective probe of the open circuit potential. © 2003 Elsevier B.V. All rights reserved.