4 resultados para Fieldwork Learning Framework


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drawing on the 4I organizational learning framework (Crossan et al., 1999), this article develops a model to explain the multi-level and cross-level relationships between HRM practices and innovation. Individual, team, and organizational level learning stocks are theorized to explain how HRM practices affect innovation at a given level. Feed-forward and feedback learning flows explain how cross-level effects of HRM practices on innovation take place. In addition, we propose that HRM practices fostering individual, team, and organizational level learning should form a coherent system to facilitate the emergence of innovation. The article is concluded with discussions on its contributions and potential future research directions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Different types of serious games have been used in elucidating computer science areas such as computer games, mobile games, Lego-based games, virtual worlds and webbased games. Different evaluation techniques have been conducted like questionnaires, interviews, discussions and tests. Simulation have been widely used in computer science as a motivational and interactive learning tool. This paper aims to evaluate the possibility of successful implementation of simulation in computer programming modules. A framework is proposed to measure the impact of serious games on enhancing students understanding of key computer science concepts. Experiments will be held on the EEECS of Queen’s University Belfast students to test the framework and attain results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.

Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.

Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.

Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resilience is widely accepted as a desirable system property for cyber-physical systems. However, there are no metrics that can be used to measure the resilience of cyber-physical systems (CPS) while the multi-dimensional nature of performance in these systems is considered. In this work, we present first results towards a resilience metric framework. The key contributions of this framework are threefold: First, it allows to evaluate resilience with respect to different performance indicators that are of interest. Second, complexities that are relevant to the performance indicators of interest, can be intentionally abstracted. Third and final, it supports the identification of reasons for good or bad resilience to improve system design.