18 resultados para Field identification
Resumo:
This paper presents the results of a real bridge field experiment in which damage was applied artificially to a steel truss bridge. The aim of this paper is to identify the dynamic parameters of this bridge using conventional techniques and investigate the effect of various damage conditions on those parameters. In the field experiment, acceleration measurements were recorded at a number of locations on the bridge deck. To excite the bridge, a two-axle van was driven across the bridge at constant speed. Dynamic parameters, such as the bridge mode shape, natural frequency and damping constant, are identified from the acceleration signals using existing techniques such as the fast Fourier transform, logarithmic decrement and frequency domain decomposition. The variation of these parameters under the influence of artificially applied damage conditions is investigated in order to evaluate their sensitivity to the bridge damage.
Resumo:
The phenomenological mechanisms of passive intermodulation (PIM) in printed lines have been explored by mapping intermodulation products generated by the two-tone traveling waves in microstrip lines. Near-field probing based upon a commercial PIM analyzer has been employed for identification of the PIM sources in printed lines. The results of extensive near-field probing provide the direct experimental evidences of cumulative growth of the intermodulation products in the matched uniform microstrip lines and reveal the fundamental role of the nonlinear scattering by the lumped nonlinear inclusions in the intermodulation production. The distributed nature of the PIM generation in microstrip lines has been conclusively demonstrated and comprehensively described in terms of the four-wave mixing process that proved to be fully consistent with the results of experimental observations of third-order PIM products on the matched and mismatched microstrip lines. © 2006 IEEE.
Resumo:
For the world's population, rice consumption is a major source of inorganic arsenic (As), a nonthreshold class 1 carcinogen. Reducing the amount of total and inorganic As within the rice grain would reduce the exposure risk. In this study, grain As was measured in 76 cultivars consisting of Bangladeshi landraces, improved Bangladesh Rice Research Institute (BRRI) cultivars, and parents of permanent mapping populations grown in two field sites in Bangladesh, Faridpur and Sonargaon, irrigated with As-contaminated tubewell water. Grain As ranged from 0.16 to 0.74 mg kg(-1) at Faridpur and from 0.07 to 0.28 mg kg(-1) at Sonargaon. Highly significant cultivar differences were detected and a significant correlation (r = 0.802) in the grain As between the two field sites was observed, indicating stable genetic differences in As accumulation. The cultivars with the highest concentration of grain As were the Bangladeshi landraces. Landraces with red bran had significantly more grain As than the cultivars with brown bran. The percent of inorganic As decreased linearly with increasing total As, but genetic variation within this trend was identified. A number of local cultivars with low grain As were identified. Some tropical japonica cultivars with low grain As have the potential to be used in breeding programs and genetic studies aiming to identify genes which decrease grain As.
Resumo:
Collagen is widely used as a biomedical material, and its importance is likely to grow as research and understanding progresses in this field. As a biomedical material, ensuring the sterility of collagen before use as, or incorporation into, a medical device is paramount. However, common sterilisation techniques can induce changes in the physical structure and protein chemistry of collagen, potentially affecting the performance. In this preliminary study, the influence of autoclaving, gamma irradiation and ethylene oxide gas sterilisation on the denaturation temperature and helical content of the collagen was evaluated using differential scanning calorimetry and Fourier transform infrared spectroscopy. Early results indicate that all sterilisation techniques affect collagen properties but suggest that the least damaging of the techniques investigated was y irradiation.
Resumo:
Psychoanalysis has been widely used to develop our understanding of power in organizations. In this paper, I draw on a case study of a non-profit organization in the field of international development, in order to explore in depth how people engage with powerful discourses at play in this context. I use an ethnographic approach to do so, and find Lacan's ideas on identification and affect to be useful in the analysis of the case. I show how, at first glance, people appeared to readily alter their activities and goals in response to the wishes of an important donor. However, moving deeper to examine identifications on the part of people themselves reveals complex forms of recognition that were inscribed by affective relations. I discuss the implications of these findings for the study of organizations, including the contribution of the concept of affect for studies of identification and subjection in organizations, and the value of ethnographic research approaches that draw upon Lacan's work on recognition.
Resumo:
In this paper, a new field-programmable gate array (FPGA) identification generator circuit is introduced based on physically unclonable function (PUF) technology. The new identification generator is able to convert flip-flop delay path variations to unique n-bit digital identifiers (IDs), while requiring only a single slice per ID bit by using 1-bit ID cells formed as hard-macros. An exemplary 128-bit identification generator is implemented on ten Xilinx Spartan-6 FPGA devices. Experimental results show an uniqueness of 48.52%, and reliability of 92.41% over a 25°C to 70°C temperature range and 10% fluctuation in supply voltage
Resumo:
Pseudomonas aeruginosa genotyping relies mainly upon DNA fingerprinting methods, which can be subjective, expensive and time-consuming. The detection of at least three different clonal P. aeruginosa strains in patients attending two cystic fibrosis (CF) centres in a single Australian city prompted the design of a non-gel-based PCR method to enable clinical microbiology laboratories to readily identify these clonal strains. We designed a detection method utilizing heat-denatured P. aeruginosa isolates and a ten-single-nucleotide polymorphism (SNP) profile. Strain differences were detected by SYBR Green-based real-time PCR and high-resolution melting curve analysis (HRM10SNP assay). Overall, 106 P. aeruginosa sputum isolates collected from 74 patients with CF, as well as five reference strains, were analysed with the HRM10SNP assay, and the results were compared with those obtained by pulsed-field gel electrophoresis (PFGE). The HRM10SNP assay accurately identified all 45 isolates as members of one of the three major clonal strains characterized by PFGE in two Brisbane CF centres (Australian epidemic strain-1, Australian epidemic strain-2 and P42) from 61 other P. aeruginosa strains from Australian CF patients and two representative overseas epidemic strain isolates. The HRM10SNP method is simple, is relatively inexpensive and can be completed in <3 h. In our setting, it could be made easily available for clinical microbiology laboratories to screen for local P. aeruginosa strains and to guide infection control policies. Further studies are needed to determine whether the HRM10SNP assay can also be modified to detect additional clonal strains that are prevalent in other CF centres.
Resumo:
The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of,300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.
Resumo:
Elements in grain crops such as iron, zinc and selenium are essential in the human diet, whereas elements such as arsenic are potentially toxic to humans. This study aims to identify quantitative trait loci (QTLs) for trace elements in rice grain. A field experiment was conducted in an arsenic enriched field site in Qiyang, China using the Bala x Azucena mapping population grown under standard field conditions. Grains were subjected to elemental analysis by inductively coupled plasma mass spectroscopy. QTLs were detected for the elemental composition within the rice grains, including for iron and selenium, which have previously been detected in this population grown at another location, indicating the stability of these QTLs. A correlation was observed between flowering time and a number of the element concentrations in grains, which was also revealed as co-localisation between flowering time QTLs and grain element QTLs. Unravelling the environmental conditions that influence the grain ionome appears to be complex, but from the results in this study one of the major factors which controls the accumulation of elements within the grain is flowering time.
Resumo:
This article presents a low-cost portable electrochemical instrument capable of on-site identification of heavy metals. The instrument acquires metal-specific voltage and current signals by the application of differential pulse anodic stripping voltammetry. This technique enhances the analytical current and rejects the background current, resulting in a higher signal-to-noise ratio for a better detection limit. The identification of heavy metals is based on an intelligent machine-based method using a multilayer perceptron neural network consisting of three layers of neurons. The neural network is implemented using a 16 bit microcontroller. The system is developed for use in the field in order to avoid expensive and time-consuming procedures and can be used in a variety of situations to help environmental assessment and control.
Resumo:
We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.
Resumo:
Despite years of investigation into triclabendazole (TCBZ) resistance in Fasciola hepatica, the genetic mechanisms responsible remain unknown. Extensive analysis of multiple triclabendazole-susceptible and -resistant isolates using a combination of experimental in vivo and in vitro approaches has been carried out, yet few, if any, genes have been demonstrated experimentally to be associated with resistance phenotypes in the field. In this review we summarize the current understanding of TCBZ resistance from the approaches employed to date. We report the current genomic and genetic resources for F. hepatica that are available to facilitate novel functional genomics and genetic experiments for this parasite in the future. Finally, we describe our own non-biased approach to mapping the major genetic loci involved in conferring TCBZ resistance in F. hepatica.
Resumo:
Breast cancer treatment has been increasingly successful over the last 20 years due in large part to targeted therapies directed against different subtypes. However, basal-like breast cancers still represent a considerable challenge to clinicians and scientists alike since the pathogenesis underlying the disease and the target cell for transformation of this subtype is still undetermined. The considerable similarities between basal-like and BRCA1 mutant breast cancers led to the hypothesis that these cancers arise from transformation of a basal cell within the normal breast epithelium through BRCA1 dysfunction. Recently, however, a number of studies have called this hypothesis into question. This review summarises the initial findings which implicated the basal cell as the cell of origin of BRCA1 related basal-like breast cancers, as well as the more recent data which identifies the luminal progenitor cells as the likely target of transformation. We compare a number of key studies in this area and identify the differences that could explain some of the contradictory findings. In addition, we highlight the role of BRCA1 in breast cell differentiation and lineage determination by reviewing recent findings in the field and our own observations suggesting a role for BRCA1 in stem cell regulation through activation of the p63 and Notch pathways. We hope that through an increased understanding of the BRCA1 role in breast differentiation and the identification of the cell(s) of origin we can improve treatment options for both BRCA1 mutant and basal-like breast cancer subgroups.
Resumo:
The accumulation of biogenic greenhouse gases (methane, carbon dioxide) in organic sediments is an important factor in the redevelopment and risk management of many brownfield sites. Good practice with brownfield site characterization requires the identification of free-gas phases and pathways that allow its migration and release at the ground surface. Gas pockets trapped in the subsurface have contrasting properties with the surrounding porous media that favor their detection using geophysical methods. We have developed a case study in which pockets of gas were intercepted with multilevel monitoring wells, and their lateral continuity was monitored over time using resistivity. We have developed a novel interpretation procedure based on Archie’s law to evaluate changes in water and gas content with respect to a mean background medium. We have used induced polarization data to account for errors in applying Archie’s law due to the contribution of surface conductivity effects. Mosaics defined by changes in water saturation allowed the recognition of gas migration and groundwater infiltration routes and the association of gas and groundwater fluxes. The inference on flux patterns was analyzed by taking into account pressure measurements in trapped gas reservoirs and by metagenomic analysis of the microbiological content, which was retrieved from suspended sediments in groundwater sampled in multilevel monitoring wells. A conceptual model combining physical and microbiological subsurface processes suggested that biogas trapped at depth may have the ability to quickly travel to the surface.
Resumo:
We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) and Advanced Camera for Surveys Wide Field Channel F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M_{r^' }}=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Hα absorption minimum of -11 700 km s-1 (at 1 d post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (