7 resultados para FLUME
Resumo:
In patients with cystic fibrosis (CF) lung damage secondary to chronic infection is the main cause of death. Treatment of lung disease to reduce the impact of infection, inflammation and subsequent lung injury is therefore of major importance. Here we discuss the present status of antibiotic therapy for the major pathogens in CF airways, including prophylaxis against infection, eradication of early infection, suppression of chronic infection, and the treatment of infective exacerbations. We outline measures to optimize maintenance treatment for infection in the light of novel antibiotic drug formulations. We discuss new developments in culture-independent microbiological diagnostic techniques and the use of tools for monitoring the success of antibiotic treatment courses. Finally, cost-effectiveness analyses for antibiotic treatment in CF patients are discussed.
Flow due to multiple jets downstream of a barrage: Experiments, 3-D CFD and depth-averaged modelling
Resumo:
The flow through and downstream of a row of seven open draft tubes in a barrage has been investigated through laboratory experiments in a wide flume, a three-dimensional (3D) computational fluid dynamics simulation, and a two-dimensional depth-averaged computation. Agreement between the experiments and the 3D modeling is shown to be good, including the prediction of an asymmetric Coandă effect. One aim is to determine the distance downstream at which depth-averaged modeling provides a reasonable prediction; this is shown to be approximately 20 tube diameters downstream of the barrage. Upstream of this, the depth-averaged modeling inaccurately predicts water level, bed shear, and the 3D flow field. The 3D model shows that bed shear stress can be markedly magnified near the barrage, particularly where the jets become attached.
Resumo:
This paper describes a series of experiments undertaken to investigate the slamming of an Oscillating Wave Surge Converter in extreme sea states. These two-dimensional experiments were undertaken in the Wave Flume at Ecole Centrale Marseille. Images from a high speed camera are used to identify the physics of the slamming process. A single pressure sensor is used to record the characteristic of the pressure. Finally numerical results are compared to the output from the experiments.
Resumo:
BACKGROUND: Ivacaftor has been previously assessed in patients with cystic fibrosis with Gly551Asp-CFTR or other gating mutations. We assessed ivacaftor in patients with Arg117His-CFTR, a residual function mutation.
METHODS: We did a 24-week, placebo-controlled, double-blind, randomised clinical trial, which enrolled 69 patients with cystic fibrosis aged 6 years and older with Arg117His-CFTR and percentage of predicted forced expiratory volume in 1 s (% predicted FEV1) of at least 40. We randomly assigned eligible patients (1:1) to receive placebo or ivacaftor 150 mg every 12 h for 24 weeks. Randomisation was stratified by age (6-11, 12-17, and ≥18 years) and % predicted FEV1 (<70, ≥70 to ≤90, and >90). The primary outcome was the absolute change from baseline in % predicted FEV1 through week 24. Secondary outcomes included safety and changes in sweat chloride concentrations and Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain scores. An open-label extension enrolled 65 of the patients after washout; after 12 weeks, we did an interim analysis.
FINDINGS: After 24 weeks, the treatment difference in mean absolute change in % predicted FEV1 between ivacaftor (n=34) and placebo (n=35) was 2·1 percentage points (95% CI -1·13 to 5·35; p=0·20). Ivacaftor treatment resulted in significant treatment differences in sweat chloride (-24·0 mmol/L, 95% CI -28·01 to -19·93; p<0·0001) and CFQ-R respiratory domain (8·4, 2·17 to 14·61; p=0·009). In prespecified subgroup analyses, % predicted FEV1 significantly improved with ivacaftor in patients aged 18 years or older (treatment difference vs placebo: 5·0 percentage points, 95% CI 1·15 to 8·78; p=0·01), but not in patients aged 6-11 years (-6·3 percentage points, -11·96 to -0·71; p=0·03). In the extension study, both placebo-to-ivacaftor and ivacaftor-to-ivacaftor groups showed % predicted FEV1 improvement (absolute change from post-washout baseline at week 12: placebo-to-ivacaftor, 5·0 percentage points [p=0·0005]; ivacaftor-to-ivacaftor, 6·0 percentage points [p=0·006]). We did not identify any new safety concerns. The studies are registered with ClinicalTrials.gov (the randomised, placebo-controlled study, number NCT01614457; the open-label extension study, number NCT01707290).
INTERPRETATION: Although this study did not show a significant improvement in % predicted FEV1, ivacaftor did significantly improve sweat chloride and CFQ-R respiratory domain scores and lung function in adult patients with Arg117His-CFTR, indicating that ivacaftor might benefit patients with Arg117His-CFTR who have established disease.
Resumo:
The characteristics of hydraulic jumps were investigated for three shapes of artificial apparent corrugated beds in a horizontal rectangular flume. Rectangular, triangular, and circular-shaped tire waste corrugated beds were used. Froude number ranged from 2.75 to 4.25. The experimental observations included water surface profiles, bed shear stress, and the hydraulic jump length. Results showed that the shape of the corrugation had relatively insignificant effects on hydraulic jump properties for small Froude numbers. The rectangular, triangular, and circular-shaped corrugated beds reduced the hydraulic jump length by up to 7, 10, and 11%, respectively. The corrugated bed also reduced the tailwater depth by up to 11.5% compared with the smooth bed. The apparent conditions of corrugated bed reduced the hydraulic jump relative length and height by about 0.4 and 0.5, respectively. The circular-shaped tire waste was found to be more effective in reducing the length and depth of the hydraulic jump.
Resumo:
Most models of riverine eco-hydrology and biogeochemistry rely upon bulk parameterization of fluxes. However, the transport and retention of carbon and nutrients in headwater streams is strongly influenced by biofilms (surface-attached microbial communities), which results in strong feedbacks between stream hydrodynamics and biogeochemistry. Mechanistic understanding of the interactions between streambed biofilms and nutrient dynamics is lacking. Here we present experimental results linking microscale observations of biofilm community structure to the deposition and resuspension of clay-sized mineral particles in streams. Biofilms were grown in identical 3 m recirculating flumes over periods of 14-50 days. Fluorescent particles were introduced to each flume, and their deposition was traced over 30 minutes. Particle resuspension from the biofilms was then observed under an increased stream flow, mimicking a flood event. We quantified particle fluxes using flow cytometry and epifluorescence microscopy. We directly observed particle adhesion to the biofilm using a confocal laser scanning microscope. 3-D Optical Coherence Tomography was used to determine biofilm roughness, areal coverage and void space in each flume. These measurements allow us to link biofilm complexity to particle retention during both baseflow and floodflow. The results suggest that increased biofilm complexity favors deposition and retention of fine particles in streams.
Resumo:
Natural mineral-water interface reactions drive ecosystem/global fluoride (F−) cycling. These small-scale processes prove challenging to monitoring due to mobilization being highly localized and variable; influenced by changing climate, hydrology, dissolution chemistries and pedogenosis. These release events could be captured in situ by the passive sampling technique, diffusive gradients in thin-films (DGT), providing a cost-effective and time-integrated measurement of F− mobilization. However, attempts to develop the method for F− have been unsuccessful due to the very restrictive operational ranges that most F−-absorbents function within. A new hybrid-DGT technique for F− quantification containing a three-phase fine particle composite (Fesingle bondAlsingle bondCe, FAC) adsorbent was developed and evaluated. Sampler response was validated in laboratory and field deployments, passing solution chemistry QC within ionic strength and pH ranges of 0–200 mmol L−1 and 4.3–9.1, respectively, and exhibiting high sorption capacities (98 ± 8 μg cm−2). FAC-DGT measurements adequately predicted up to weeklong averaged in situ F− fluvial fluxes in a freshwater river and F− concentrations in a wastewater treatment flume determined by high frequency active sampling. While, millimetre-scale diffusive fluxes across the sediment-water interface were modeled for three contrasting lake bed sediments from a F−-enriched lake using the new FAC-DGT platform.