4 resultados para FLUME
em CaltechTHESIS
Resumo:
This study investigates lateral mixing of tracer fluids in turbulent open-channel flows when the tracer and ambient fluids have different densities. Longitudinal dispersion in flows with longitudinal density gradients is investigated also.
Lateral mixing was studied in a laboratory flume by introducing fluid tracers at the ambient flow velocity continuously and uniformly across a fraction of the flume width and over the entire depth of the ambient flow. Fluid samples were taken to obtain concentration distributions in cross-sections at various distances, x, downstream from the tracer source. The data were used to calculate variances of the lateral distributions of the depth-averaged concentration. When there was a difference in density between the tracer and the ambient fluids, lateral mixing close to the source was enhanced by density-induced secondary flows; however, far downstream where the density gradients were small, lateral mixing rates were independent of the initial density difference. A dimensional analysis of the problem and the data show that the normalized variance is a function of only three dimensionless numbers, which represent: (1) the x-coordinate, (2) the source width, and (3) the buoyancy flux from the source.
A simplified set of equations of motion for a fluid with a horizontal density gradient was integrated to give an expression for the density-induced velocity distribution. The dispersion coefficient due to this velocity distribution was also obtained. Using this dispersion coefficient in an analysis for predicting lateral mixing rates in the experiments of this investigation gave only qualitative agreement with the data. However, predicted longitudinal salinity distributions in an idealized laboratory estuary agree well with published data.
Resumo:
This study concerns the longitudinal dispersion of fluid particles which are initially distributed uninformly over one cross section of a uniform, steady, turbulent open channel flow. The primary focus is on developing a method to predict the rate of dispersion in a natural stream.
Taylor's method of determining a dispersion coefficient, previously applied to flow in pipes and two-dimensional open channels, is extended to a class of three-dimensional flows which have large width-to-depth ratios, and in which the velocity varies continuously with lateral cross-sectional position. Most natural streams are included. The dispersion coefficient for a natural stream may be predicted from measurements of the channel cross-sectional geometry, the cross-sectional distribution of velocity, and the overall channel shear velocity. Tracer experiments are not required.
Large values of the dimensionless dispersion coefficient D/rU* are explained by lateral variations in downstream velocity. In effect, the characteristic length of the cross section is shown to be proportional to the width, rather than the hydraulic radius. The dimensionless dispersion coefficient depends approximately on the square of the width to depth ratio.
A numerical program is given which is capable of generating the entire dispersion pattern downstream from an instantaneous point or plane source of pollutant. The program is verified by the theory for two-dimensional flow, and gives results in good agreement with laboratory and field experiments.
Both laboratory and field experiments are described. Twenty-one laboratory experiments were conducted: thirteen in two-dimensional flows, over both smooth and roughened bottoms; and eight in three-dimensional flows, formed by adding extreme side roughness to produce lateral velocity variations. Four field experiments were conducted in the Green-Duwamish River, Washington.
Both laboratory and flume experiments prove that in three-dimensional flow the dominant mechanism for dispersion is lateral velocity variation. For instance, in one laboratory experiment the dimensionless dispersion coefficient D/rU* (where r is the hydraulic radius and U* the shear velocity) was increased by a factory of ten by roughening the channel banks. In three-dimensional laboratory flow, D/rU* varied from 190 to 640, a typical range for natural streams. For each experiment, the measured dispersion coefficient agreed with that predicted by the extension of Taylor's analysis within a maximum error of 15%. For the Green-Duwamish River, the average experimentally measured dispersion coefficient was within 5% of the prediction.
Resumo:
A study was made of the means by which turbulent flows entrain sediment grains from alluvial stream beds. Entrainment was considered to include both the initiation of sediment motion and the suspension of grains by the flow. Observations of grain motion induced by turbulent flows led to the formulation of an entrainment hypothesis. It was based on the concept of turbulent eddies disrupting the viscous sublayer and impinging directly onto the grain surface. It is suggested that entrainment results from the interaction between fluid elements within an eddy and the sediment grains.
A pulsating jet was used to simulate the flow conditions in a turbulent boundary layer. Evidence is presented to establish the validity of this representation. Experiments were made to determine the dependence of jet strength, defined below, upon sediment and fluid properties. For a given sediment and fluid, and fixed jet geometry there were two critical values of jet strength: one at which grains started to roll across the bed, and one at which grains were projected up from the bed. The jet strength K, is a function of the pulse frequency, ω, and the pulse amplitude, A, defined by
K = Aω-s
Where s is the slope of a plot of log A against log ω. Pulse amplitude is equal to the volume of fluid ejected at each pulse divided by the cross sectional area of the jet tube.
Dimensional analysis was used to determine the parameters by which the data from the experiments could be correlated. Based on this, a method was devised for computing the pulse amplitude and frequency necessary either to move or project grains from the bed for any specified fluid and sediment combination.
Experiments made in a laboratory flume with a turbulent flow over a sediment bed are described. Dye injection was used to show the presence, in a turbulent boundary layer, of two important aspects of the pulsating jet model and the impinging eddy hypothesis. These were the intermittent nature of the sublayer and the presence of velocities with vertical components adjacent to the sediment bed.
A discussion of flow conditions, and the resultant grain motion, that occurred over sediment beds of different form is given. The observed effects of the sediment and fluid interaction are explained, in each case, in terms of the entrainment hypothesis.
The study does not suggest that the proposed entrainment mechanism is the only one by which grains can be entrained. However, in the writer’s opinion, the evidence presented strongly suggests that the impingement of turbulent eddies onto a sediment bed plays a dominant role in the process.
Resumo:
Theoretical and experimental studies were made on two classes of buoyant jet problems, namely:
1) an inclined, round buoyant yet in a stagnant environment with linear density-stratification;
2) a round buoyant jet in a uniform cross stream of homogenous density.
Using the integral technique of analysis, assuming similarity, predictions can be made for jet trajectory, widths, and dilution ratios, in a density-stratified or flowing environment. Such information is of great importance in the design of disposal systems for sewage effluent into the ocean or waste gases into the atmosphere.
The present study of a buoyant jet in a stagnant environment has extended the Morton type of analysis to cover the effect of the initial angle of discharge. Numerical solutions have been presented for a range of initial conditions. Laboratory experiments were conducted for photographic observations of the trajectories of dyed jets. In general the observed jet forms agreed well with the calculated trajectories and nominal half widths when the value of the entrainment coefficient was taken to be α = 0.082, as previously suggested by Morton.
The problem of a buoyant jet in a uniform cross stream was analyzed by assuming an entrainment mechanism based upon the vector difference between the characteristic jet velocity and the ambient velocity. The effect of the unbalanced pressure field on the sides of the jet flow was approximated by a gross drag term. Laboratory flume experiments with sinking jets which are directly analogous to buoyant jets were performed. Salt solutions were injected into fresh water at the free surface in a flume. The jet trajectories, dilution ratios and jet half widths were determined by conductivity measurements. The entrainment coefficient, α, and drag coefficient, Cd, were found from the observed jet trajectories and dilution ratios. In the ten cases studied where jet Froude number ranged from 10 to 80 and velocity ratio (jet: current) K from 4 to 16, α varied from 0.4 to 0.5 and Cd from 1.7 to 0.1. The jet mixing motion for distance within 250D was found to be dominated by the self-generated turbulence, rather than the free-stream turbulence. Similarity of concentration profiles has also been discussed.