19 resultados para Expressões fixas e semifixas
Measles virus superinfection immunity and receptor redistribution in persistently infected NT2 cells
Resumo:
A recombinant measles virus (MV) expressing red fluorescent protein (MVDsRed1) was used to produce a persistently infected cell line (piNT2-MVDsRed1) from human neural precursor (NT2) cells. A similar cell line (piNT2-MVeGFP) was generated using a virus that expresses enhanced green fluorescent protein. Intracytoplasmic inclusions containing the viral nucleocapsid protein were evident in all cells and viral glycoproteins were present at the cell surface. Nevertheless, the cells did not release infectious virus nor did they fuse to generate syncytia. Uninfected NT2 cells express the MV receptor CD46 uniformly over their surface, whereas CD46 was present in cell surface aggregates in the piNT2 cells. There was no decrease in the overall amount of CD46 in piNT2 compared to NT2 cells. Cell-to-cell fusion was observed when piNT2 cells were overlaid onto confluent monolayers of MV receptor-positive cells, indicating that the viral glycoproteins were correctly folded and processed. Infectious virus was released from the underlying cells, indicating that persistence was not due to gross mutations in the virus genome. Persistently infected cells were superinfected with MV or canine distemper virus and cytopathic effects were not observed. However, mumps virus could readily infect the cells, indicating that superinfection immunity is not caused by general soluble antiviral factors. As MVeGFP and MVDsRed1 are antigenically indistinguishable but phenotypically distinct it was possible to use them to measure the degree of superinfection immunity in the absence of any cytopathic effect. Only small numbers of non-fusing green fluorescent piNT2-MVDsRed1 cells (1 : 300 000) were identified in which superinfecting MVeGFP entered, replicated and expressed its genes.
Resumo:
Human (h)Langerin/CD207 is a C-type lectin of Langerhans cells (LC) that induces the formation of Birbeck granules (BG). In this study, we have cloned a cDNA-encoding mouse (m)Langerin. The predicted protein is 66% homologous to hLangerin with conservation of its particular features. The organization of human and mouse Langerin genes are similar, consisting of six exons, three of which encode the carbohydrate recognition domain. The mLangerin gene maps to chromosome 6D, syntenic to the human gene on chromosome 2p13. mLangerin protein, detected by a mAb as a 48-kDa species, is abundant in epidermal LC in situ and is down-regulated upon culture. A subset of cells also expresses mLangerin in bone marrow cultures supplemented with TGF-beta. Notably, dendritic cells in thymic medulla are mLangerin-positive. By contrast, only scattered cells express mLangerin in lymph nodes and spleen. mLangerin mRNA is also detected in some nonlymphoid tissues (e.g., lung, liver, and heart). Similarly to hLangerin, a network of BG form upon transfection of mLangerin cDNA into fibroblasts. Interestingly, substitution of a conserved residue (Phe(244) to Leu) within the carbohydrate recognition domain transforms the BG in transfectant cells into structures resembling cored tubules, previously described in mouse LC. Our findings should facilitate further characterization of mouse LC, and provide insight into a plasticity of dendritic cell organelles which may have important functional consequences.
Resumo:
This article introduces a new approach to measure corporate contributions to sustainability called Sustainable Value Added. Existing approaches to measure sustainability are based on a comparative assessment of environmental and social burdens and can thus be characterised as burden-based approaches. However, these approaches suffer from severe limitations as a comparative assessment and aggregation of all relevant environmental and social burdens fails in practice. In contrast to these burden-based approaches Sustainable Value Added is value-based. It determines the value that is created by the reduced or increased use of different environmental and social resources. For this purpose the use of environmental and social resources is valued at their opportunity cost. Sustainable Value Added allows an integrated assessment of the economic, environmental, and social performance of a company and expresses the corporate contribution to sustainability in a single monetary indicator. This article explains the theoretical background of Sustainable Value Added, relates it to existing approaches to measure sustainability, and - using the example of Henkel KGaA - demonstrates its practical applicability.
Resumo:
Complex cell signal transduction mechanisms regulate intestinal epithelial shape, polarity, motility, organelles, cell membrane components as well as physical and mechanical properties to influence alimentary digestion, absorption, secretion, detoxification and fluid balance. Interactions between the epithelial cells and adjacent mesenchyme are central to intestinal homeostasis although the key regulatory molecules of specific differentiation steps remain unclear. Isolation and primary culture of heterotypic murine intestinal cells provides a model system for elucidation of essential molecular cross-talk between epithelium and mesenchyme that may provide several biological and practical advantages over transformed cell lines. An in vitro primary culture system for neonatal rat or mouse intestinal cells has been established that forms monolayers, expresses intestine-specific epithelial features including intestinal brush borders and appropriate hydrolase enzymes. Our studies confirm the promise of this method which may advance our understanding of heterotypic cellular interactions implicated in intestinal function and may provide important insights into the pathobiology of disease.
Resumo:
Increased urbanization and female employment have led to the cat overtaking the dog as the companion animal of preference. However, thisarticle looks beyond lifestyle changes as reasons for the popularity of the cat. The article explores the emotional consumer-socialization processinvolving the incorporation of the cat into the family. Subjective personal introspection (SPI) and supporting vignettes of female humans in theirfamilies (all of which were high-involvement owners) explore the hows and whys of feline incorporation. The study identifies several categories ofincorporation. The findings suggest that this complex process involves many factors — namely, consumer socialization, intergenerationalinfluence, brand loyalty, commitment, near-instant loyalty, immediacy, distress, anthropomorphism, and nostalgia. These factors underpin theintimacy and care the human–feline relationship expresses. The ability for humans and cats to bond in a way that fosters emotional intimacy canbe considered one of the purest forms of relationships.© 2007 Published by Elsevier Inc.
Resumo:
Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA- M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.
Resumo:
Burkholderia cepacia is an opportunistic respiratory pathogen in cystic fibrosis patients. One highly transmissible and virulent clone belonging to genomovar IIIa expresses pili with unique cable morphology, which enable the bacterium to bind cytokeratin 13 in epithelial cells. The cblA gene, encoding the major pilin subunit, is often used as a DNA marker to identify potentially virulent isolates. The authors have now cloned and sequenced four additional genes, cblB, cblC, cblD and cblS, in the pilus gene cluster. This work shows that the products of the first four genes of the cbl operon, cblA, cblB, cblC and cblD, are sufficient for pilus assembly on the bacterial surface. Deletion of cblB abrogated pilus assembly and compromised the stability of the CblA protein in the periplasm. In contrast, deletion of cblD resulted in no pili, but there was no effect on expression and stability of the CblA protein subunit. These results, together with protein sequence homologies, predicted structural analyses, and the presence of typical amino acid motifs, are consistent with the assignment of functional roles for CblB as a chaperone that stabilizes the major pilin subunit in the periplasm, and CblD as the initiator of pilus biogenesis. It is also shown that expression of Cbl pili in Escherichia coli is not sufficient to mediate the binding of bacteria to the epithelial cell receptor cytokeratin 13, and that B. cepacia still binds to cytokeratin 13 in the absence of Cbl pili, suggesting that additional bacterial components are required for effective binding.
Resumo:
Helminth pathogens express papain-like cysteine peptidases, termed cathepsins, which have important roles in virulence, including host entry, tissue migration and the suppression of host immune responses. The liver fluke Fasciola hepatica, an emerging human pathogen, expresses the largest cathepsin L cysteine protease family yet described. Recent phylogenetic, biochemical and structural studies indicate that this family contains five separate clades, which exhibit overlapping but distinct substrate specificities created by a process of gene duplication followed by subtle residue divergence within the protease active site. The developmentally regulated expression of these proteases correlates with the passage of the parasite through host tissues and its encounters with different host macromolecules.
Resumo:
Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2)-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS.
Resumo:
fA1122 is a T7-related bacteriophage infecting most isolates of Yersinia pestis, the etiologic agent of plague, and used by the CDC in the identification of Y. pestis. fA1122 infects Y. pestis grown both at 20 °C and at 37 °C. Wild-type Yersinia pseudotuberculosis strains are also infected but only when grown at 37 °C. Since Y. pestis expresses rough lipopolysaccharide (LPS) missing the O-polysaccharide (O-PS) and expression of Y. pseudotuberculosis O-PS is largely suppressed at temperatures above 30 °C, it has been assumed that the phage receptor is rough LPS. We present here several lines of evidence to support this. First, a rough derivative of Y. pseudotuberculosis was also fA1122 sensitive when grown at 22 °C. Second, periodate treatment of bacteria, but not proteinase K treatment, inhibited the phage binding. Third, spontaneous fA1122 receptor mutants of Y. pestis and rough Y. pseudotuberculosis could not be isolated, indicating that the receptor was essential for bacterial growth under the applied experimental conditions. Fourth, heterologous expression of the Yersinia enterocolitica O:3 LPS outer core hexasaccharide in both Y. pestis and rough Y. pseudotuberculosis effectively blocked the phage adsorption. Fifth, a gradual truncation of the core oligosaccharide into the Hep/Glc (L-glycero-D-manno-heptose/D-glucopyranose)-Kdo/Ko (3-deoxy-D-manno-oct-2-ulopyranosonic acid/D-glycero-D-talo-oct-2-ulopyranosonic acid) region in a series of LPS mutants was accompanied by a decrease in phage adsorption, and finally, a waaA mutant expressing only lipid A, i.e., also missing the Kdo/Ko region, was fully fA1122 resistant. Our data thus conclusively demonstrated that the fA1122 receptor is the Hep/Glc-Kdo/Ko region of the LPS core, a common structure in Y. pestis and Y. pseudotuberculosis.
Resumo:
Yersinia enterocolitica (Ye) is a gram-negative bacterium; Ye serotype O:3 expresses lipopolysaccharide (LPS) with a hexasaccharide branch known as the outer core (OC). The OC is important for the resistance of the bacterium to cationic antimicrobial peptides and also functions as a receptor for bacteriophage phiR1-37 and enterocoliticin. The biosynthesis of the OC hexasaccharide is directed by the OC gene cluster that contains nine genes (wzx, wbcKLMNOPQ, and gne). In this study, we inactivated the six OC genes predicted to encode glycosyltransferases (GTase) one by one by nonpolar mutations to assign functions to their gene products. The mutants expressed no OC or truncated OC oligosaccharides of different lengths. The truncated OC oligosaccharides revealed that the minimum structural requirements for the interactions of OC with bacteriophage phiR1-37, enterocoliticin, and OC-specific monoclonal antibody 2B5 were different. Furthermore, using chemical and structural analyses of the mutant LPSs, we could assign specific functions to all six GTases and also revealed the exact order in which the transferases build the hexasaccharide. Comparative modeling of the catalytic sites of glucosyltransferases WbcK and WbcL followed by site-directed mutagenesis allowed us to identify Asp-182 and Glu-181, respectively, as catalytic base residues of these two GTases. In general, conclusive evidence for specific GTase functions have been rare due to difficulties in accessibility of the appropriate donors and acceptors; however, in this work we were able to utilize the structural analysis of LPS to get direct experimental evidence for five different GTase specificities.
Resumo:
The O-antigen of lipopolysaccharide (LPS) is required for virulence in Yersinia enterocolitica serotype O:8. Here we evaluated the importance of controlling the O-antigen biosynthesis using an in vivo rabbit model of infection. Y. enterocolitica O:8 wild-type strain was compared to three mutants differing in the O-antigen phenotype: (i) the rough strain completely devoid of the O-antigen, (ii) the wzy strain that lacks the O-antigen polymerase (Wzy protein) and expresses LPS with only one repeat unit, and (iii) the wzz strain that lacks the O-antigen chain length determinant (Wzz protein) and expresses LPS without modal distribution of O-antigen chain lengths. The most attenuated strain was the wzz mutant. The wzz bacteria were cleared from the tissues by day 30, the blood parameters were least dramatic and histologically only immunomorphological findings were seen. The level of attenuation of the rough and the wzy strain bacteria was between the wild-type and the wzz strain. Wild-type bacteria were highly resistant to killing by polymorphonuclear leukocytes, the wzz strain bacteria were most sensitive and the rough and wzy strain bacteria were intermediate resistant. These results clearly demonstrated that the presence of O-antigen on the bacterial surface is not alone sufficient for full virulence, but also there is a requirement for its controlled chain length.
Resumo:
It is often suggested that stereotypic behaviour represents a coping response to suboptimal environmental conditions. However, individuals of many species show different coping styles depending on their personality type. Therefore, personality is an important consideration when investigating why only certain individuals become stereotypic under suboptimal conditions. Thus, the aim of this review is to explore the possibility that personality, in particular coping style, may explain why certain individuals are predisposed to stereotypy. We review behavioural and physiological similarities between proactive and stereotypic individuals and suggest that they may in fact be the same phenotype. We also explore how these characteristics might predispose proactive individuals to stereotypy and how this is triggered by the environment. We conclude that personality factors relating to proactivity may mediate whether an animal expresses stereotypic behaviour and that the alternative strategy in such conditions is depression and emotional blunting. We conclude by outlining the animal welfare implications if this hypothesis is correct. © 2013 The Association for the Study of Animal Behaviour.
Resumo:
We have shown that Fasciola hepatica expresses at least six ß-tubulins in the adult stage of its life cycle, designated F.hep-ß-tub1-6 (Ryan et al., 2008). Here we show that different complements of tubulin isotypes are expressed in different tissues and at different life cycle stages; this information may inform the search for novel anthelmintics. The predominant (as judged by quantitative PCR) isotype transcribed at the adult stage was F.hep-ß-tub1 and immunolocalisation studies revealed that this isotype occurred mainly in mature spermatozoa and vitelline follicles. Quantitative PCR indicated that changes occurred in the transcription levels of ß-tubulin isotypes at certain life cycle stages and may be of importance in the efficacy of benzimidazole-based anthelmintic drugs, but there were no significant differences between the triclabendazole (TCBZ)-susceptible Leon isolate and the TCBZ-resistant Oberon isolate in the transcription levels of each of the isotypes. When three well-characterised isolates with differing susceptibilities to TCBZ were compared, only one amino acid change resulting from a homozygous coding sequence difference (Gly269Ser) in isotype 4 was observed. However, this change was not predicted to alter the overall structure of the protein. In conclusion, these findings indicate that there is tissue-specific expression of tubulin isotypes in the liver fluke but the development of resistance to TCBZ is not associated with changes in its presumed target molecule.