16 resultados para Eta-receptor
Resumo:
1. Effects of endothelin-1 (Et-1) were studied on membrane currents in choroidal arteriolar smooth muscle by using perforated patch-clamp recordings. 2. Et-1 (10 nM) activated oscillatory Ca(2+)-activated Cl(-)-currents (I(Cl(Ca))) which could not be reversed by washing out. 3. Currents through L-type Ca(2+) channels were resolved in a divalent free medium (I(Ca(L)Na)). Et-1 reduced I(Ca(L)Na) by 75 +/- 7% within 30 s and this effect faded over 5 min, when the depression remained constant. On washing out Et-1, I(Ca(L)Na) almost completely recovered within 10 s. 4. BQ123 (1 microM), a peptide Et(A) receptor blocker, prevented the activation of I(Cl(Ca)), but failed to inhibit I(Cl(Ca)) transients once they had been initiated. In contrast, BQ123 not only prevented but also reversed the inhibition of I(Ca(L)Na) by Et-1. BQ788 (1 microM), an Et(B) receptor antagonist, did not prevent the activation of I(Cl(Ca)) or the inhibition of I(Ca(L)Na) by Et-1. 5. ABT-627 (10 nM), a non-peptide Et(A) receptor antagonist also blocked the activation of I(Cl(Ca)). However, on I(Ca(L)Na), ABT-627 (10 nM) mimicked the action of Et-1 an effect blocked by BQ123 suggesting that ABT-627 acted as an agonist. 6. The data are consistent with choroidal arteriolar smooth muscle cells having two types of Et(A) receptor, one where BQ123 is an antagonist and ABT-627 an agonist, where ligands dissociate freely and this receptor is coupled to inhibition of L-type Ca(2+) channels. In the other, BQ123 and ABT-627 are both antagonists and with Et-1 the receptor converts to a high affinity state producing the classical irreversible activation I(Cl(Ca)).
Resumo:
We examined the extent to which the systemic and renal vasoconstriction induced by nitric oxide (NO) inhibition in vivo is mediated by endothelin (ET). We examined the effects of BQ-610, a specific ETA-receptor antagonist, after NO inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) in the anesthetized rat. Mean arterial pressure (MAP) increased after L-NAME infusion from 107 +/- 2 to 133 +/- 3 mmHg (P
Resumo:
PURPOSE:
To investigate endothelin 1 (Et1)-dependent Ca(2+)-signaling at the cellular and subcellular levels in retinal arteriolar myocytes.
METHODS:
Et1 responses were imaged from Fluo-4-loaded smooth muscle in isolated segments of rat retinal arteriole using confocal laser microscopy.
RESULTS:
Basal [Ca(2+)](i), subcellular Ca(2+)-sparks, and cellular Ca(2+)-oscillations were all increased during exposure to Et1 (10 nM). Ca(2+)-spark frequency was also increased by 90% by 10 nM Et1. The increase in oscillation frequency was concentration dependent and was inhibited by the EtA receptor (Et(A)R) blocker BQ123 but not by the EtB receptor antagonist BQ788. Stimulation of Ca(2+)-oscillations by Et1 was inhibited by a phospholipase C blocker (U73122; 10 µM), two inhibitors of inositol 1,4,5-trisphosphate receptors (IP(3)Rs), xestospongin C (10 µM), 2-aminoethoxydiphenyl borate (100 µM), and tetracaine (100 µM), a blocker of ryanodine receptors (RyRs).
CONCLUSIONS:
Et1 stimulates Ca(2+)-sparks and oscillations through Et(A)Rs. The underlying mechanism involves the activation of phospholipase C and both IP(3)Rs and RyRs, suggesting crosstalk between these Ca(2+)-release channels. These findings suggest that phasic Ca(2+)-oscillations play an important role in the smooth muscle response to Et1 within the retinal microvasculature and support an excitatory, proconstrictor role for Ca(2+)-sparks in these vessels.
Resumo:
PURPOSE: To assess the effects of advanced glycation endproduct (AGE) modification of vascular basement membrane (BM) on endothelin-1 (Et-1) induced intracellular [Ca2+] ([Ca2+]i) homeostasis and contraction in retinal microvascular pericytes (RMP). METHODS: RMPs were isolated from bovine retinal capillaries and propagated on AGE modified BM extract (AGE-BM) or non-modified native BM. Cytosolic Ca2+ was estimated using fura-2 microfluorimetry and cellular contraction determined by measurement of planimetric cell surface area. ETA receptor mRNA and protein expression was assessed by real time RT-PCR and western blotting, respectively. RESULTS: Exogenous endothelin-1 (Et-1) evoked rises in [Ca2+]i and contraction in RMPs were found to be mediated entirely through ETA receptor (ETAR) activation. Both peak and plateau phases of the Et-1 induced [Ca2+]i response and contraction were impaired in RMPs propagated on AGE modified BM. ETAR mRNA expression remained unchanged in RMPs exposed to native or AGE-BM, but protein expression for ETAR (66 kDa) was lower in the AGE exposed cells. CONCLUSIONS: These results suggest that substrate derived AGE crosslinks can influence RMP physiology by mechanisms which include disruption of ETA receptor signalling. AGE modification of vascular BMs may contribute to the retinal hemodynamic abnormalities observed during diabetes.
Resumo:
OBJECTIVE: To determine the effects of age and dual endothelin (ET)A/ETB receptor antagonism (bosentan) on aortic matrix metalloproteinase (MMP) abundance and tissue inhibitor of metalloproteinase (TIMP) expression in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). METHODS: Male SHR and control WKY rats were randomly assigned to receive placebo or bosentan (100 mg/kg per day) for 3 months. Animals were killed under terminal anaesthesia at either 20 weeks (adult) or 17-20 months (senescent). Aortic gelatinase activity was determined by zymography, whereas MT-1 MMP and TIMP-1 expression were assessed by immunoblotting. RESULTS: In WKY rats, aortic MMP-2 but not proMMP-2 activity was 3.6-fold higher (P <0.02) in the senescent compared with the adult group. TIMP-1 (twofold) and MT-1 MMP (3.8-fold) expression increased (P <0.05) with age in the WKY groups. Short-term hypertension (adult SHR versus adult WKY) increased MMP-2 to 74.7 +/- 14.1 from 18.9 +/- 3.5 arbitrary units (AU) (P = 0.0012), but did not alter proMMP-2 activity. This increased further on progression to chronic hypertension (117.4 +/- 12.2 versus 74.7 +/- 14.1 AU; P <0.02). Bosentan decreased MMP-2 (78.9 +/- 3.8 versus 117.4 +/- 12.2 AU; P = 0.014) and proMMP-2 activity (P <0.006) in the senescent SHR group. CONCLUSION: Ageing and the development/progression of hypertension are associated with increased MMP-2 activity in the aorta, which is consistent with ongoing remodelling of the vasculature. However, the underlying mechanisms regulating MMP-2 abundance in ageing and hypertension appear to be divergent, as MT-1 MMP expression is differentially altered. Dual ETA/ETB receptor antagonism did not alter the age-dependent increase in aortic MMP activity in normotensive rats. However, bosentan decreased pro and active MMP-2 activity in senescent SHR rats, indicating that ET modulates late events in vascular remodelling in hypertension.
Resumo:
This study has examined the localisation and receptor-binding of the endothelins in retina and choroid of human and rat origin. Immunoreactivity to anti-ET1 and anti-ET3 was investigated in trypsin digests, frozen sections and ultrathin sections using immunocytochemistry and immunogold labelling techniques. In addition, receptor binding of 125I-ET1 and 125I-ET3 was visualised and quantified using autoradiography and image analysis. Intense immunoreactivity to anti-ET1 and anti-ET3 was observed in the photoreceptor inner segments and in the outer plexiform layer (OPL) of human and rat retina. Ultrastructural localisation using immunogold labelling confirmed the presence of ET1 and ET3 in the photoreceptor cells. In retinal vascular digests, ET1 was visualised in the arteries, arterioles and at the pre-arteriolar sphincters, however, immunoreactivity to anti-ET3 was absent in the retinal vasculature. Both ETA and ETB-type receptor binding sites to 125I-ET1 and 125I-ET3 were detected in the vascular smooth muscle of choroidal and retinal vessels with the former being predominant. Extravascular binding sites of the ETB-type were found in the ganglion cell layer.