61 resultados para Engineering simulation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with modelling and experimental verification of desalination theory (surface force pore flow) . The work has direct application in desalination of sea water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of source/drain engineering on the performance of a six-transistor (6-T) static random access memory (SRAM) cell, based on 22 nm double-gate (DG) SOI MOSFETs, has been analyzed using mixed-mode simulation, for three different circuit topologies for low voltage operation. The trade-offs associated with the various conflicting requirements relating to read/write/standby operations have been evaluated comprehensively in terms of eight performance metrics, namely retention noise margin, static noise margin, static voltage/current noise margin, write-ability current, write trip voltage/current and leakage current. Optimal design parameters with gate-underlap architecture have been identified to enhance the overall SRAM performance, and the influence of parasitic source/drain resistance and supply voltage scaling has been investigated. A gate-underlap device designed with a spacer-to-straggle (s/sigma) ratio in the range 2-3 yields improved SRAM performance metrics, regardless of circuit topology. An optimal two word-line double-gate SOI 6-T SRAM cell design exhibits a high SNM similar to 162 mV, I-wr similar to 35 mu A and low I-leak similar to 70 pA at V-DD = 0.6 V, while maintaining SNM similar to 30% V-DD over the supply voltage (V-DD) range of 0.4-0.9 V.