28 resultados para Elliptic Curve
Resumo:
A novel hardware architecture for elliptic curve cryptography (ECC) over GF(p) is introduced. This can perform the main prime field arithmetic functions needed in these cryptosystems including modular inversion and multiplication. This is based on a new unified modular inversion algorithm that offers considerable improvement over previous ECC techniques that use Fermat's Little Theorem for this operation. The processor described uses a full-word multiplier which requires much fewer clock cycles than previous methods, while still maintaining a competitive critical path delay. The benefits of the approach have been demonstrated by utilizing these techniques to create a field-programmable gate array (FPGA) design. This can perform a 256-bit prime field scalar point multiplication in 3.86 ms, the fastest FPGA time reported to date. The ECC architecture described can also perform four different types of modular inversion, making it suitable for use in many different ECC applications. © 2006 IEEE.
Resumo:
In this paper a novel scalable public-key processor architecture is presented that supports modular exponentiation and Elliptic Curve Cryptography over both prime GF(p) and binary GF(2) extension fields. This is achieved by a high performance instruction set that provides a comprehensive range of integer and polynomial basis field arithmetic. The instruction set and associated hardware are generic in nature and do not specifically support any cryptographic algorithms or protocols. Firmware within the device is used to efficiently implement complex and data intensive arithmetic. A firmware library has been developed in order to demonstrate support for numerous exponentiation and ECC approaches, such as different coordinate systems and integer recoding methods. The processor has been developed as a high-performance asymmetric cryptography platform in the form of a scalable Verilog RTL core. Various features of the processor may be scaled, such as the pipeline width and local memory subsystem, in order to suit area, speed and power requirements. The processor is evaluated and compares favourably with previous work in terms of performance while offering an unparalleled degree of flexibility. © 2006 IEEE.
Resumo:
New FPGA architectures for the ordinary Montgomery multiplication algorithm and the FIOS modular multiplication algorithm are presented. The embedded 18×18-bit multipliers and fast carry look-ahead logic located on the Xilinx Virtex2 Pro family of FPGAs are used to perform the ordinary multiplications and additions/subtractions required by these two algorithms. The architectures are developed for use in Elliptic Curve Cryptosystems over GF(p), which require modular field multiplication to perform elliptic curve point addition and doubling. Field sizes of 128-bits and 256-bits are chosen but other field sizes can easily be accommodated, by rapidly reprogramming the FPGA. Overall, the larger the word size of the multiplier, the more efficiently it performs in terms of area/time product. Also, the FIOS algorithm is flexible in that one can tailor the multiplier architecture is to be area efficient, time efficient or a mixture of both by choosing a particular word size. It is estimated that the computation of a 256-bit scalar point multiplication over GF(p) would take about 4.8 ms.
Resumo:
Multistep surface processes involving a number of association reactions and desorption processes may be considered as hypothetical one-step desorption processes. Thus, heterogeneous catalytic reactions can be treated kinetically as consisting of two steps: adsorption and desorption. It is also illustrated that the hypothetical one-step desorption process follows the BEP relation. A volcano curve can be obtained from kinetic analysis by including both adsorption and desorption processes.
Resumo:
A robust method for fitting to the results of gel electrophoresis assays of damage to plasmid DNA caused by radiation is presented. This method makes use of nonlinear regression to fit analytically derived dose response curves to observations of the supercoiled, open circular and linear plasmid forms simultaneously, allowing for more accurate results than fitting to individual forms. Comparisons with a commonly used analysis method show that while there is a relatively small benefit between the methods for data sets with small errors, the parameters generated by this method remain much more closely distributed around the true value in the face of increasing measurement uncertainties. This allows for parameters to be specified with greater confidence, reflected in a reduction of errors on fitted parameters. On test data sets, fitted uncertainties were reduced by 30%, similar to the improvement that would be offered by moving from triplicate to fivefold repeats (assuming standard errors). This method has been implemented in a popular spreadsheet package and made available online to improve its accessibility. (C) 2011 by Radiation Research Society
Resumo:
A new inline coupling topology for narrowband helical resonator filters is proposed that allows to introduce selectively located transmission zeros (TZs) in the stopband. We show that a pair of helical resonators arranged in an interdigital configuration can realize a large range of in-band coupling coefficient values and also selectively position a TZ in the stopband. The proposed technique dispenses the need for auxiliary elements, so that the size, complexity, power handling and insertion loss of the filter are not compromised. A second order prototype filter with dimensions of the order of 0.05 lambda, power handling capability up to 90 W, measured insertion loss of 0.18 dB and improved selectivity is presented.
Resumo:
We present spectroscopy and photometry of the He-rich supernova (SN) 2008ax. The early-time spectra show prominent P-Cygni H lines, which decrease with time and disappear completely about 2 months after the explosion. In the same period He I lines become the most prominent spectral features. SN 2008ax displays the ordinary spectral evolution of a Type IIb supernova. A stringent pre-discovery limit constrains the time of the shock breakout of SN 2008ax to within only a few hours. Its light curve, which peaks in the B band about 20 d after the explosion, strongly resembles that of other He-rich core-collapse supernovae. The observed evolution of SN 2008ax is consistent with the explosion of a young Wolf-Rayet (of WNL type) star, which had retained a thin, low-mass shell of its original H envelope. The overall characteristics of SN 2008ax are reminiscent of those of SN 1993J, except for a likely smaller H mass. This may account for the findings that the progenitor of SN 2008ax was a WNL star and not a K supergiant as in the case of SN 1993J, that a prominent early-time peak is missing in the light curve of SN 2008ax, and that H alpha is observed at higher velocities in SN 2008ax than in SN 1993J.