4 resultados para Denatured


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we report for the first time the comprehensive inhibitor profiling of the Proteus mirabilis metalloprotease virulence factor, ZapA (mirabilysin) using a 160 compound focused library of N-alpha mercaptoamide dipeptides, in order to map the S1´ and S2´ binding site preferences of this important enzyme. This study has revealed a preference for the aromatic residues tyrosine and tryptophan in P1´ and aliphatic residues in P2´. From this library, six compounds were identified which exhibited sub- to low micromolar Ki values. The most potent inactivator, SH-CO2-Y-V-NH2 was capable of preventing ZapA-mediated hydrolysis of heat denatured IgA, indicating these inhibitors may be capable of protecting host proteins against ZapA during colonisation and infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land application of wastes from concentrated animal feeding operations results in accumulation of copper (Cu) and antimicrobials in terrestrial systems. Interaction between Cu and antimicrobials may change Cu speciation in soil solution, and affect Cu bioavailability and toxicity. In this study, earthworms were exposed to quartz sand percolated with different concentrations of Cu and ciprofloxacin (CIP). Copper uptake by earthworms, its subcellular partition, and toxicity were studied. An increase in the applied CIP decreased the free Cu ion concentration in external solution and mortalities of earthworm, while Cu contents in earthworms increased. Copper and CIP in earthworms were fractionated into five fractions: a granular fraction (D), a fraction consisting of tissue fragments, cell membranes, and intact cells (E), a microsomal fraction (F), a denatured proteins fraction (G), and a heat-stable proteins fraction (H). Most of the CIP in earthworms was in fraction H. Copper was redistributed from the metal-sensitive fraction E to fractions D, F, G, and H with increasing CIP concentration. These results challenge the free ion activity model and suggested that Cu may be partly taken up as Cu-CIP complexes in earthworms, changing the bioavailability, subcellular distribution, and toxicity of Cu to earthworms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa genotyping relies mainly upon DNA fingerprinting methods, which can be subjective, expensive and time-consuming. The detection of at least three different clonal P. aeruginosa strains in patients attending two cystic fibrosis (CF) centres in a single Australian city prompted the design of a non-gel-based PCR method to enable clinical microbiology laboratories to readily identify these clonal strains. We designed a detection method utilizing heat-denatured P. aeruginosa isolates and a ten-single-nucleotide polymorphism (SNP) profile. Strain differences were detected by SYBR Green-based real-time PCR and high-resolution melting curve analysis (HRM10SNP assay). Overall, 106 P. aeruginosa sputum isolates collected from 74 patients with CF, as well as five reference strains, were analysed with the HRM10SNP assay, and the results were compared with those obtained by pulsed-field gel electrophoresis (PFGE). The HRM10SNP assay accurately identified all 45 isolates as members of one of the three major clonal strains characterized by PFGE in two Brisbane CF centres (Australian epidemic strain-1, Australian epidemic strain-2 and P42) from 61 other P. aeruginosa strains from Australian CF patients and two representative overseas epidemic strain isolates. The HRM10SNP method is simple, is relatively inexpensive and can be completed in <3 h. In our setting, it could be made easily available for clinical microbiology laboratories to screen for local P. aeruginosa strains and to guide infection control policies. Further studies are needed to determine whether the HRM10SNP assay can also be modified to detect additional clonal strains that are prevalent in other CF centres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microsomal glutathione transferase-1 (MGST1) is a membrane-bound enzyme involved in the detoxification of xenobiotics and the protection of cells against oxidative stress. The proposed active form of the enzyme is a noncovalently associated homotrimer that binds one substrate glutathione molecule/trimer. In this study, this complex has been directly observed by electrospray mass spectrometry analysis of active rat liver MGST1 reconstituted in a minimum amount of detergent. The measured mass of the homotrimer is 53 kDa, allowing for the mass of three MGST molecules in complex with one glutathione molecule. Collision-induced dissociation of the trimer complex resulted in the formation of monomer and homodimer ion species. Two distinct species of homodimer were observed, one unliganded and one identified as a homodimer.glutathione complex. Activation of the enzyme by N-ethylmaleimide through modification of Cys(49) (Svensson, R., Rinaldi, R., Swedmark, S., and Morgenstern, R. (2000) Biochemistry 39, 15144-15149) was monitored by the observation of an appropriate increase in mass in both the denatured monomeric and native trimeric forms of MGST1. Together, the data correspond well with the proposed functional organization of MGST1. These results also represent the first example of direct electrospray mass spectrometry analysis of a detergent-solubilized multimeric membrane protein complex in its native state.