10 resultados para Conventional evaluation
Resumo:
Transportation accounts for 22% of greenhouse gas emissions in the UK, and increases to 25% in Northern Ireland. Surface transport carbon dioxide emissions, consisting of road and rail, are dominated by cars. Demand for mobility is rising rapidly and vehicle numbers are expected to more than double by 2050. Car manufacturers are working towards reducing their carbon footprint through improving fuel efficiency and controlling exhaust emissions. Fuel efficiency is now a key consideration of consumers purchasing a new vehicle. While measures have been taken to help to reduce pollutants, in the future, alternative technologies will have to be used in the transportation industry to achieve sustainability. There are currently many alternatives to the market leader, the internal combustion engine. These alternatives include hydrogen fuel cell vehicles and electric vehicles, a term which is widely used to cover battery electric vehicles, plug-in hybrid electric vehicles and extended-range electric vehicles. This study draws direct comparisons measuring the differing performance in terms of fuel consumption, carbon emissions and range of a typical family saloon car using different fuel types. These comparisons will then be analysed to see what effect switching from a conventionally fuelled vehicle to a range extended electric vehicle would have not only on the end user, but also the UK government.
Resumo:
In this paper, new solutions to the problem of making measurements, of carbonation and chloride ingress, in particular, in concrete structures are considered. The approach has focused on the design, development, and use of fiber-optic sensors (FOSs), recognizing the need in that conventional devices are often either inaccurate, expensive, or unsuitable for encapsulation in the material. The sensors have been designed to monitor, in situ and nondestructively, relevant physical, and chemical changes in cementitious materials. Three different types of FOS were constructed, tested, and evaluated specifically for this application, these being a temperature sensor (based on the fluorescence decay) and pH and chloride sensors, based on sol-gel (solidified gel) technology with appropriate impregnated indicators. The sensors were all designed to be inserted into the structures and evaluated under the harshest conditions, i.e., being mounted when the mortar is poured and thus tested in situ, with the temperature and pH sensors successfully embedded in mortar. The outcomes of these tests have shown that both the temperature sensor and the pH sensor were able to function correctly for the duration of the work - for over 18 months after placement. The laboratory tests on the chloride sensor showed it was able to make measurements but was not reversible, limiting its potential utility for in situ environments. Research is ongoing to refine the sensor performance and extend the testing.
Resumo:
This article contributes towards redefining school improvement more broadly than conventional outcomes sometimes imply, and describes original and practical applications of school self-evaluation models. The significance of the work has been acknowledged by reviewers in the school improvement and peacebuilding and development fields. As a result of the research reported here, Smith was invited to support the work of the Department for Education Northern Ireland Schools Community Relations Panel and the Community Relations officers representing the five Education and Library Boards. The latter used the self-evaluation framework as a model for developing a regional whole-school self-evaluation document. Smith was the lead author of the paper.
Resumo:
For Variable Stiffness (VS) composites with steered curvilinear tow paths, the fiber orientation angle varies continuously throughout the laminate, and is not required to be straight, parallel and uniform within each ply as in conventional composite laminates. Hence, the thermal properties (conduction), as well as the structural stiffness and strength, vary as functions of location in the laminate, and the associated composite structure is often called a “variable stiffness” composite structure. The steered fibers lead not only to the alteration of mechanical load paths, but also to the alteration of thermal paths that may
result in favorable temperature distributions within the laminate and improve the laminate performance. Evaluation of VS laminate performance under thermal loading is the focus of this chapter. Thermal performance evaluations require experimental and numerical analysis of VS laminates under different processing and loading conditions. One of the advantages of using composite materials in many applications is the tailoring capability of the laminate,
not only during the design phase but also for manufacturing. Heat transfer through variable conduction and chemical reaction (degree of cure) occurring during manufacturing (curing) plays an important role in the final thermal and mechanical performance, and shape of composite structures.
Resumo:
This paper investigates the characteristics of silicon piezoresistors with various doping concentrations and Length/Width dimensions at micro level. The silicon piezoresistors have been produced by conventional fabrication methods. The measurements are conducted on silicon test chips where p type resistors are fabricated on n type (100) silicon substrates along the <110> direction. A four point bending setup has been designed and fabricated for characterizing the piezoresistor sets. The four point bending setup is used to apply uniform uniaxial stress along the <110> direction. This experimental result demonstrates a good linear relationship between resistance change and stress applied. The effect of doping concentration on temperature sensitivity is also investigated.
Resumo:
The problem of learning from imbalanced data is of critical importance in a large number of application domains and can be a bottleneck in the performance of various conventional learning methods that assume the data distribution to be balanced. The class imbalance problem corresponds to dealing with the situation where one class massively outnumbers the other. The imbalance between majority and minority would lead machine learning to be biased and produce unreliable outcomes if the imbalanced data is used directly. There has been increasing interest in this research area and a number of algorithms have been developed. However, independent evaluation of the algorithms is limited. This paper aims at evaluating the performance of five representative data sampling methods namely SMOTE, ADASYN, BorderlineSMOTE, SMOTETomek and RUSBoost that deal with class imbalance problems. A comparative study is conducted and the performance of each method is critically analysed in terms of assessment metrics. © 2013 Springer-Verlag.
Resumo:
The rock/atmosphere interface is inhabited by a complex microbial community including bacteria, algae and fungi. These communities are prominent biodeterioration agents and remarkably influence the status of stone monuments and buildings. Deeper comprehension of natural biodeterioration processes on stone surfaces has brought about a concept of complex microbial communities referred to as "subaerial biofilms". The practical implications of biofilm formation are that control strategies must be devised both for testing the susceptibility of the organisms within the biofilm and treating the established biofilm. Model multi-species biofilms associated with mineral surfaces that are frequently refractory to conventional treatment have been used as test targets. A combination of scanning microscopy with image analysis was applied along with traditional cultivation methods and fluorescent activity stains. Such a polyphasic approach allowed a comprehensive quantitative evaluation of the biofilm status and development. Effective treatment strategies incorporating chemical and physical agents have been demonstrated to prevent biofilm growth in vitro. Model biofilm growth on inorganic support was significantly reduced by a combination of PDT and biocides
Resumo:
The ability to directly utilize hydrocarbons and other renewable liquid fuels is one of the most important issues affecting the large scale deployment of solid oxide fuel cells (SOFCs). Herein we designed La0.2Sr0.7TiO3-Ni/YSZ functional gradient anode (FGA) supported SOFCs, prepared with a co-tape casting method and sintered using the field assisted sintering technique (FAST). Through SEM observations, it was confirmed that the FGA structure was achieved and well maintained after the FAST process. Distortion and delamination which usually results after conventional sintering was successfully avoided. The La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs showed a maximum power density of 600mWcm-2 at 750°C, and was stable for 70h in CH4. No carbon deposition was detected using Raman spectroscopy. These results confirm the potential coke resistance of La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs.
Resumo:
BACKGROUND: Diabetic retinopathy is an important cause of visual loss. Laser photocoagulation preserves vision in diabetic retinopathy but is currently used at the stage of proliferative diabetic retinopathy (PDR).
OBJECTIVES: The primary aim was to assess the clinical effectiveness and cost-effectiveness of pan-retinal photocoagulation (PRP) given at the non-proliferative stage of diabetic retinopathy (NPDR) compared with waiting until the high-risk PDR (HR-PDR) stage was reached. There have been recent advances in laser photocoagulation techniques, and in the use of laser treatments combined with anti-vascular endothelial growth factor (VEGF) drugs or injected steroids. Our secondary questions were: (1) If PRP were to be used in NPDR, which form of laser treatment should be used? and (2) Is adjuvant therapy with intravitreal drugs clinically effective and cost-effective in PRP?
ELIGIBILITY CRITERIA: Randomised controlled trials (RCTs) for efficacy but other designs also used.
REVIEW METHODS: Systematic review and economic modelling.
RESULTS: The Early Treatment Diabetic Retinopathy Study (ETDRS), published in 1991, was the only trial designed to determine the best time to initiate PRP. It randomised one eye of 3711 patients with mild-to-severe NPDR or early PDR to early photocoagulation, and the other to deferral of PRP until HR-PDR developed. The risk of severe visual loss after 5 years for eyes assigned to PRP for NPDR or early PDR compared with deferral of PRP was reduced by 23% (relative risk 0.77, 99% confidence interval 0.56 to 1.06). However, the ETDRS did not provide results separately for NPDR and early PDR. In economic modelling, the base case found that early PRP could be more effective and less costly than deferred PRP. Sensitivity analyses gave similar results, with early PRP continuing to dominate or having low incremental cost-effectiveness ratio. However, there are substantial uncertainties. For our secondary aims we found 12 trials of lasers in DR, with 982 patients in total, ranging from 40 to 150. Most were in PDR but five included some patients with severe NPDR. Three compared multi-spot pattern lasers against argon laser. RCTs comparing laser applied in a lighter manner (less-intensive burns) with conventional methods (more intense burns) reported little difference in efficacy but fewer adverse effects. One RCT suggested that selective laser treatment targeting only ischaemic areas was effective. Observational studies showed that the most important adverse effect of PRP was macular oedema (MO), which can cause visual impairment, usually temporary. Ten trials of laser and anti-VEGF or steroid drug combinations were consistent in reporting a reduction in risk of PRP-induced MO.
LIMITATION: The current evidence is insufficient to recommend PRP for severe NPDR.
CONCLUSIONS: There is, as yet, no convincing evidence that modern laser systems are more effective than the argon laser used in ETDRS, but they appear to have fewer adverse effects. We recommend a trial of PRP for severe NPDR and early PDR compared with deferring PRP till the HR-PDR stage. The trial would use modern laser technologies, and investigate the value adjuvant prophylactic anti-VEGF or steroid drugs.
STUDY REGISTRATION: This study is registered as PROSPERO CRD42013005408.
FUNDING: The National Institute for Health Research Health Technology Assessment programme.