66 resultados para Convective plume


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physics of the plume-induced shock and separation, particularly at high plume to exit pressure ratios with and without shock-turbulent boundary-layer control methods, were studied using computational techniques. Mass-averaged Navier-Stokes equations with a two-equation turbulence model were solved by using a fully implicit finite volume scheme and time.marching algorithm. The control methodologies for shock interactions included a porous tail and a porous extension attached at the nozzle exit or trailing edge. The porous tail produced a weaker shock and fixed the shock position on the control surface. The effect of the porous extension on shock interactions was mainly to restrain the plume from strongly underexpanding during a change in flight conditions. These techniques could give an additional dimension to the design and control of supersonic missiles.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman satellites have been observed in the scattering of a Nd:YAG laser (532 nm) from a laser-ablated Mg plasma plume. We identify them as originating from transitions between the fine-structure components of the metastable 3s3p P-3(0,1,2) level of Mg. We have calculated the cross sections for Raman and Rayleigh scattering from the metastable state. Comparison of the expected ratio of the satellites to the Rayleigh peak indicates the changing population fraction of the metastable states in the plume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous optical absorption and laser-induced fluorescence measurements have been used to map the three-dimensional number densities of ground-state ions and neutrals within a low-temperature KrF laser-produced magnesium plasma expanding into vacuum. Data is reported for the symmetry plane of the plasma, which includes the laser interaction point at a delay of 1 μs after the ∼30 ns KrF laser ablation pulse and for a laser fluence of 2 J cm−2 on target. The number density distributions of ion and neutral species within this plane indicate that two distinct regions exist within the plume; one is a fast component containing ions and neutrals at maximum densities of ∼3×1013 cm−3 and ∼4×1012 cm−3, respectively and the second is a high-density region containing slow neutral species, at densities up to ∼1×1015 cm−3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out an optical Thomson scatter study of a KrF laser-ablated Mg plume. The evolution of the electron temperature and density at distances 2-5 mm from the target surface has been studied. We have observed that the electron density falls more rapidly than the atomic density and believe that this is a result of rapid dielectronic recombination. A comparison of the electron density profile and evolution with simple hydrodynamic modeling indicates that there is a strong absorption of the laser in the plasma vapor above the target, probably due to photoionization. We also conclude that an isothermal model of expansion better fits the data than an isentropic expansion model. Finally, we compared data obtained from Thomson scatter with those obtained by emission spectroscopy under similar conditions. The two sets of data have differences but are broadly consistent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thomson scattering is one of the most powerful diagnostic tools for plasma characterization, and it has been applied to a variety of plasmas. It is a nonintrusive technique, and the interpretation of the signal is relatively simple. However, this method has not been widely applied to low-temperature laser-ablated plasmas. Raman satellites have been observed in the scattering spectrum from a Mg laser-ablated plasma, giving this diagnostic the potential to be also used in density quantification of metastable states in plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple Langmuir probe technique has been used to measure the electron density, electron temperature, and plasma potential in the late stages (>5 mu s) of a laser ablated plasma plume. In the plasma, formed following 248 nm laser irradiation of a copper target, in vacuum at a laser fluence of 2.5 J cm(-2), electron densities of similar to 10(18) m(-3) and temperatures of similar to 0.5 eV were measured. These values are comparable with those reported previously using Faraday cup detectors and optical emission spectroscopy, respectively. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasma produced during laser ablation deposition of thin film YBCO has been studied by optical emission spectroscopy. There is evidence of increased YO band emission in the range 590-625 nm as the ambient oxygen gas pressure confining the plume is increased in the range 30-200 m Torr. Temporal profiles show that close to the target the plume is insensitive to ambient oxygen pressure. It is deduced that the optical emission here is excited by electron impact excitation. Further away from the target there is evidence that two distinct processes are at work. One is again electron excitation; the emission from this process decreases with distance because the expanding plume cools and collisions become less frequent in the expanding gas. The second is driven by oxidation of atomic species expelled at high speeds from the target. The main region of this activity is in the plume sheath where a shock front ensures heating of ambient O2 and reaction of monatomic plasma species to form oxide in an exothermic reaction. Spatial mapping of the emission demonstrates clearly how increasing oxygen gas pressure confines the plasma and enhances the emission intensity from the molecular YO species ejected from the target in a smaller region close to the target. Ba+ is observed as a dominant species only very close to (within 1 mm of) the target. Absorption spectra have been taken in an attempt to examine ground state and cool species in the plume. They reveal the quite surprising result that YO persists in the chamber for periods up to 1 msec. This suggests an explanation for the recent report of off-axis laser deposition in terms of simple condensation. Previously, quasi-ballistic transfer of material from target to substrate has been considered the only significant process.