95 resultados para Contrôle Optimal
Resumo:
This paper derives optimal life histories for fishes or other animals in relation to the size spectrum of the ecological community in which they are both predators and prey. Assuming log-linear size-spectra and well known scaling laws for feeding and mortality, we first construct the energetics of the individual. From these we find, using dynamic programming, the optimal allocation of energy between growth and reproduction as well as the trade-off between offspring size and numbers. Optimal strategies were found to be strongly dependent on size spectrum slope. For steep size spectra (numbers declining rapidly with size), determinate growth was optimal and allocation to somatic growth increased rapidly with increasing slope. However, restricting reproduction to a fixed mating season changed optimal allocations to give indeterminate growth approximating a von Bertalanffy trajectory. The optimal offspring size was as small as possible given other restrictions such as newborn starvation mortality. For shallow size spectra, finite optimal maturity size required a decline in fitness for large size or age. All the results are compared with observed size spectra of fish communities to show their consistency and relevance.
Resumo:
Mixed-mode simulation, where device simulation is embedded directly within a circuit simulator, is used for the first time to provide scaling guidelines to achieve optimal digital circuit performance for double gate SOI MOSFETs. This significant advance overcomes the lack of availability of SPICE model parameters. The sensitivity of the gate delay and on-off current ratio to each of the key geometric and technological parameters of the transistor is quantified. The impact of the source-drain doping profile on circuit performance is comprehensively investigated.
Resumo:
An efficient method for calculating the electronic structure of systems that need a very fine sampling of the Brillouin zone is presented. The method is based on the variational optimization of a single (i.e., common to all points in the Brillouin zone) basis set for the expansion of the electronic orbitals. Considerations from k.p-approximation theory help to understand the efficiency of the method. The accuracy and the convergence properties of the method as a function of the optimal basis set size are analyzed for a test calculation on a 16-atom Na supercell.
Resumo:
Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.
Resumo:
We examine the dynamic optimization problem for not-for-profit financial institutions (NFPs) that maximize consumer surplus, not profits. We characterize the optimal dynamic policy and find that it involves credit rationing. Interest rates set by mature NFPs will typically be more favorable to customers than market rates, as any surplus is distributed in the form of interest rate subsidies, with credit rationing being required to prevent these subsidies from distorting loan volumes from their optimal levels. Rationing overcomes a fundamental problem in NFPs; it allows them to distribute the surplus without distorting the volume of activity from the efficient level.
Resumo:
This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.