27 resultados para Conductivity meter VWR EC300
Resumo:
Synthesis of free standing conducting polypyrrole film using room temperature melt as the electrolyte is reported. We also report variation in the contribution of ionic conductance with temperature of the polymer film by four probe method and electrochemical properties like diffusion coefficient and ionic mobility of AlCl-4 doped polypyrrole film. An attempt has been made to arrive at the stability of charge carrier concentration over a temperature range of 295 to 350 K under vacuum. The film was characterized by optical techniques and scanning electron micrography.
Resumo:
The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion. (c) 2008 American Institute of Physics.
Resumo:
Introduction: Rhythm organises musical events into patterns and forms, and rhythm perception in music is usually studied by using metrical tasks. Metrical structure also plays an organisational function in the phonology of language, via speech prosody, and there is evidence for rhythmic perceptual difficulties in developmental dyslexia. Here we investigate the hypothesis that the accurate perception of musical metrical structure is related to basic auditory perception of rise time, and also to phonological and literacy development in children. Methods: A battery of behavioural tasks was devised to explore relations between musical metrical perception, auditory perception of amplitude envelope structure, phonological awareness (PA) and reading in a sample of 64 typically-developing children and children with developmental dyslexia. Results: We show that individual differences in the perception of amplitude envelope rise time are linked to musical metrical sensitivity, and that musical metrical sensitivity predicts PA and reading development, accounting for over 60% of variance in reading along with age and I.Q. Even the simplest metrical task, based on a duple metrical structure, was performed significantly more poorly by the children with dyslexia. Conclusions: The accurate perception of metrical structure may be critical for phonological development and consequently for the development of literacy. Difficulties in metrical processing are associated with basic auditory rise time processing difficulties, suggesting a primary sensory impairment in developmental dyslexia in tracking the lower-frequency modulations in the speech envelope. © 2010 Elsevier.
Resumo:
A new microfluidic-based approach to measuring liquid thermal conductivity is developed to address the requirement in many practical applications for measurements using small (microlitre) sample size and integration into a compact device. The approach also gives the possibility of high-throughput testing. A resistance heater and temperature sensor are incorporated into a glass microfluidic chip to allow transmission and detection of a planar thermal wave crossing a thin layer of the sample. The device is designed so that heat transfer is locally one-dimensional during a short initial time period. This allows the detected temperature transient to be separated into two distinct components: a short-time, purely one-dimensional part from which sample thermal conductivity can be determined and a remaining long-time part containing the effects of three-dimensionality and of the finite size of surrounding thermal reservoirs. Identification of the one-dimensional component yields a steady temperature difference from which sample thermal conductivity can be determined. Calibration is required to give correct representation of changing heater resistance, system layer thicknesses and solid material thermal conductivities with temperature. In this preliminary study, methanol/water mixtures are measured at atmospheric pressure over the temperature range 30-50A degrees C. The results show that the device has produced a measurement accuracy of within 2.5% over the range of thermal conductivity and temperature of the tests. A relation between measurement uncertainty and the geometric and thermal properties of the system is derived and this is used to identify ways that error could be further reduced.
Resumo:
Six ionic liquids based on the 1-butyl-3-methylimidazolium cation have been studied. As anions Cl-, Br-, I-, [NCS](-), [N(CN)(2)](-), and [BF4](-) were selected. The electrical conductivities were determined between 173 and 393 K based on impedance measurements in the frequency range from 0.1 to 10(7) Hz. The electrical conductivity increases, whereas the glass transition temperature, the fragility, and the low temperature activation energy decrease with increasing anion size. The results can be understood from the changing anion-cation interaction strength with changing anion size and from the energy landscape interpretation of the glass transition dynamics. (C) 2010 American Institute of Physics. [doi:10.1063/1.3455892]
Resumo:
We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a continuous detection of the cantilever's dynamics.
Resumo:
We present a study on the transport properties through conductivity (s), viscosity (?), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids—pyrrolidinium hydrogen sulfate, [Pyrr][HSO4], and pyrrolidinium trifluoroacetate, [Pyrr][CF3COO]—and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes–Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H3O+. This water weight fraction appears to be the solvation limit of the H+ ions by water molecules in these two PILs solutions. However, [Pyrr][HSO4] and [Pyrr][CF3COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF3COO], ?, s, D, and the attractive potential, Epot, between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO4], the strong H-bond between the HSO4– anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm–1 for water weight fraction close to 60% at 298 K.