14 resultados para Complex Systems Science


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a unique environment whose features are able to satisfy requirements for both virtual maintenance and virtual manufacturing through the conception of original virtual reality (VR) architecture. Virtual Reality for the Maintainability and Assemblability Tests (VR_MATE) encompasses VR hardware and software and a simulation manager which allows customisation of the architecture itself as well as interfacing with a wide range of devices employed in the simulations. Two case studies are presented to illustrate VR_MATE's unique ability to allow for both maintainability tests and assembly analysis of an aircraft carriage and a railway coach cooling system respectively. The key impact of this research is the demonstration of the potentialities of using VR techniques in industry and its multiple applications despite the subjective character within the simulation. VR_MATE has been presented as a framework to support the strategic and operative objectives of companies to reduce product development time and costs whilst maintaining product quality for applications which would be too expensive to simulate and evaluate in the real world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the concept that life is an informational phenomenon, at every level of organisation, from molecules to the global ecological system. According to this thesis: (a) living is information processing, in which memory is maintained by both molecular states and ecological states as well as the more obvious nucleic acid coding; (b) this information processing has one overall function-to perpetuate itself; and (c) the processing method is filtration (cognition) of, and synthesis of, information at lower levels to appear at higher levels in complex systems (emergence). We show how information patterns, are united by the creation of mutual context, generating persistent consequences, to result in 'functional information'. This constructive process forms arbitrarily large complexes of information, the combined effects of which include the functions of life. Molecules and simple organisms have already been measured in terms of functional information content; we show how quantification may be extended to each level of organisation up to the ecological. In terms of a computer analogy, life is both the data and the program and its biochemical structure is the way the information is embodied. This idea supports the seamless integration of life at all scales with the physical universe. The innovation reported here is essentially to integrate these ideas, basing information on the 'general definition' of information, rather than simply the statistics of information, thereby explaining how functional information operates throughout life. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper, chosen as a best paper from the 2005 SAMOS Workshop on Computer Systems: describes the for the first time the major Abhainn project for automated system level design of embedded signal processing systems. In particular, this describes four key novelties: novel algorithm modelling techniques for DSP systems, automated implementation realisation, algorithm transformation for system optimisation and automated inter-processor communication. This is applied to two complex systems: a radar and sonar system. In both cases technology which allows non-experts to automatically create low-overhead, high performance embedded signal processing systems is exhibited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces a novel modelling framework for identifying dynamic models of systems that are under feedback control. These models are identified under closed-loop conditions and produce a joint representation that includes both the plant and controller models in state space form. The joint plant/controller model is identified using subspace model identification (SMI), which is followed by the separation of the plant model from the identified one. Compared to previous research, this work (i) proposes a new modelling framework for identifying closed-loop systems, (ii) introduces a generic structure to represent the controller and (iii) explains how that the new framework gives rise to a simplified determination of the plant models. In contrast, the use of the conventional modelling approach renders the separation of the plant model a difficult task. The benefits of using the new model method are demonstrated using a number of application studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The divide-and-conquer approach of local model (LM) networks is a common engineering approach to the identification of a complex nonlinear dynamical system. The global representation is obtained from the weighted sum of locally valid, simpler sub-models defined over small regions of the operating space. Constructing such networks requires the determination of appropriate partitioning and the parameters of the LMs. This paper focuses on the structural aspect of LM networks. It compares the computational requirements and performances of the Johansen and Foss (J&F) and LOLIMOT tree-construction algorithms. Several useful and important modifications to each algorithm are proposed. The modelling performances are evaluated using real data from a pilot plant of a pH neutralization process. Results show that while J&F achieves a more accurate nonlinear representation of the pH process, LOLIMOT requires significantly less computational effort.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates a systematic approach for the identification and control of Hammerstein systems over a physical IEEE 802.11b wireless channel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling-parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today's systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs ( logic, memory, mixed-signal) that are included in today's complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decade attosecond technology has opened up the investigation of ultrafast electronic processes in atoms, simple molecules and solids. Here we report the application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine, and the subsequent detection of ultrafast dynamics on a sub-4.5-fs temporal scale, which is shorter than the vibrational response of the molecule. The ability to initiate and observe such electronic dynamics in polyatomic molecules represents a crucial step forward in attosecond science, which is progressively moving towards the investigation of more and more complex systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A catalytic enantioselective electrocyclic cascade leads to the construction of topologically complex systems comprising multiple rings with up to three stereocentres. This phase-transfer catalysed process offers a new strategy for the rapid and enantioselective generation of complex products bearing all-carbon quaternary stereogenic centres. © 2012 The Royal Society of Chemistry.