49 resultados para Coal Mine
Resumo:
In complex hydrogeological environments the effective management of groundwater quality problems by pump-and-treat operations can be most confidently achieved if the mixing dynamics induced within the aquifer by pumping are well understood. The utility of isotopic environmental tracers (C-, H-, O-, S-stable isotopic analyses and age indicators—14C, 3H) for this purpose is illustrated by the analysis of a pumping test in an abstraction borehole drilled into flooded, abandoned coal mineworkings at Deerplay (Lancashire, UK). Interpretation of the isotope data was undertaken conjunctively with that of major ion hydrochemistry, and interpreted in the context of the particular hydraulic setting of flooded mineworkings to identify the sources and mixing of water qualities in the groundwater system. Initial pumping showed breakdown of initial water quality stratification in the borehole, and gave evidence for distinctive isotopic signatures (d34S(SO4) ~= -1.6‰, d18O(SO4) ~= +15‰) associated with primary oxidation of pyrite in the zone of water table fluctuation—the first time this phenomenon has been successfully characterized by these isotopes in a flooded mine system. The overall aim of the test pumping—to replace an uncontrolled outflow from a mine entrance in an inconvenient location with a pumped discharge on a site where treatment could be provided—was swiftly achieved. Environmental tracing data illustrated the benefits of pumping as little as possible to attain this aim, as higher rates of pumping induced in-mixing of poorer quality waters from more distant old workings, and/or renewed pyrite oxidation in the shallow subsurface.
Resumo:
In this paper NOx emissions modelling for real-time operation and control of a 200 MWe coal-fired power generation plant is studied. Three model types are compared. For the first model the fundamentals governing the NOx formation mechanisms and a system identification technique are used to develop a grey-box model. Then a linear AutoRegressive model with eXogenous inputs (ARX) model and a non-linear ARX model (NARX) are built. Operation plant data is used for modelling and validation. Model cross-validation tests show that the developed grey-box model is able to consistently produce better overall long-term prediction performance than the other two models.
Hydrogeology of flooded, abandoned mine workings - an integrated hydraulic/hydrogeochemical analysis
Resumo:
Since 1995, when pumps were withdrawn from deep mines in East Fife (Scotland), mine waters have been rebounding throughout the coalfield. Recently, it has become necessary to pump and treat these waters to prevent their uncontrolled emergence at the surface. However, even relatively shallow pumping to surface treatment lagoons of the initially chemically-stratified mine water from a shaft in the coastal Frances Colliery during two dynamic step-drawdown tests to establish the hydraulic characteristics of the system resulted in rapid breakdown of the stratification within 24 h and a poor pumped water quality with high dissolved Fe loading. Further, data are presented here of hydrochemical and isotopic sampling of the extended pump testing lasting up to several weeks. The use in particular of the environmental isotopes d18O, d2H, d34S, 3H, 13C and 14C alongside hydrochemical and hydraulic pump test data allowed characterisation of the Frances system dynamics, mixing patterns and water quality sources feeding into this mineshaft under continuously pumped conditions. The pumped water quality reflects three significant components of mixing: shallow freshwater, seawater, and leakage from the surface treatment lagoons. In spite of the early impact of recirculating lagoon waters on the hydrochemistries, the highest Fe loadings in the longer-term pumped waters are identified with a mixed freshwater–seawater component affected by pyrite oxidation/melanterite dissolution in the subsurface system.
Performance of a Sequential Reactive Barrier for Bioremediation of Coal Tar Contaminated Groundwater
Resumo:
Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove Polycyclic Aromatic Hydrocarbons (PAHs) and BTEX compounds, was installed at a Former Manufactured Gas Plant (FMGP) site. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant Granular Activated Carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal (>93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal (>80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals >95%).
Resumo:
Chemical Engineering Journal, 124 (2006) 103.