2 resultados para Classified catalogs (Dewey decimal)
Resumo:
Objective: To describe the ocular phenotype in patients with ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome (MIM#604292) and to determine the pathogenic basis of visual morbidity. Design: Retrospective case series. Participants: Nineteen families (23 patients) affected by EEC syndrome from the United Kingdom, Ireland, and Italy. Methods: General medical examination to fulfill the diagnostic criteria for EEC syndrome and determine the phenotypic severity. Mutational analysis of p63 was performed by polymerase chain reaction-based bidirectional Sanger sequencing. All patients with EEC syndrome underwent a complete ophthalmic examination and ocular surface assessment. Limbal stem cell deficiency (LSCD) was diagnosed clinically on the basis of corneal conjunctivalization and anatomy of the limbal palisades of Vogt. Impression cytology using immunofluorescent antibodies was performed in 1 individual. Histologic and immunohistochemical analyses were performed on a corneal button and corneal pannus from 2 EEC patients. Main Outcome Measures: The EEC syndrome phenotypic severity (EEC score), best-corrected Snellen visual acuity (decimal fraction), slit-lamp biomicroscopy, tear function index, tear breakup time, LSCD, p63 DNA sequence variants, impression cytology, and corneal histopathology. Results: Eleven heterozygous missense mutations in the DNA binding domain of p63 were identified in all patients with EEC syndrome. All patients had ocular involvement and the commonest was an anomaly of the meibomian glands and lacrimal drainage system defects. The major cause of visual morbidity was progressive LSCD, which was detected in 61% (14/23). Limbal stem cell deficiency was related to advancing age and caused a progressive keratopathy, resulting in a dense vascularized corneal pannus, and eventually leading to visual impairment. Histologic analysis and impression cytology confirmed LSCD. Conclusions: Heterozygous p63 mutations cause the EEC syndrome and result in visual impairment owing to progressive LSCD. There was no relationship of limbal stem cell failure with the severity of EEC syndrome, as classified by the EEC score, or the underlying molecular defect in p63. Financial Disclosure(s): The authors have no proprietary or commercial interest in any of the materials discussed in this article. © 2012 American Academy of Ophthalmology.
Resumo:
Applications that cannot tolerate the loss of accuracy that results from binary arithmetic demand hardware decimal arithmetic designs. Binary arithmetic in Quantum-dot cellular automata (QCA) technology has been extensively investigated in recent years. However, only limited attention has been paid to QCA decimal arithmetic. In this paper, two cost-efficient binary-coded decimal (BCD) adders are presented. One is based on the carry flow adder (CFA) using a conventional correction method. The other uses the carry look ahead (CLA) algorithm which is the first QCA CLA decimal adder proposed to date. Compared with previous designs, both decimal adders achieve better performance in terms of latency and overall cost. The proposed CFA-based BCD adder has the smallest area with the least number of cells. The proposed CLA-based BCD adder is the fastest with an increase in speed of over 60% when compared with the previous fastest decimal QCA adder. It also has the lowest overall cost with a reduction of over 90% when compared with the previous most cost-efficient design.