15 resultados para Circuit analysis
Resumo:
An efficient analysis and design of an electromagnetic-bandgap (EBG) waveguide with resonant loads is presented. Equivalent-circuit analysis is employed to demonstrate the differences between EBG waveguides with resonant and nonresonant loadings. As a result of the resonance, transmission zeros at finite frequencies emerge. The concept is demonstrated in E-plane waveguides. A generic fast and efficient formulation is presented, which starts from the generalized scattering matrix of the unit cell and derives the dispersion properties of the infinite structure. Both real and imaginary parts of the propagation constant are derived and discussed. The Floquet wavelength and impedance are also presented. The theoretical results are validated by comparison with simulations of a finite structure and experimental results. The application of the proposed EBG waveguide in the suppression of the spurious passband of a conventional E-plane filter is presented by experiment.
Resumo:
Power back-off performances of a new variant power-combining Class-E amplifier under different amplitude-modulation schemes such as continuous wave (CW), envelope elimination and restoration (EER), envelope tracking (ET) and outphasing are for the first time investigated in this study. Finite DC-feed inductances rather than massive RF chokes as used in the classic single-ended Class-E power amplifier (PA) resulted from the approximate yet effective frequency-domain circuit analysis provide the wherewithal to increase modulation bandwidth up to 80% higher than the classic single-ended Class-E PA. This increased modulation bandwidth is required for the linearity improvement in the EER/ET transmitters. The modified output load network of the power-combining Class-E amplifier adopting three-harmonic terminations technique relaxes the design specifications for the additional filtering block typically required at the output stage of the transmitter chain. Qualitative agreements between simulation and measurement results for all four schemes were achieved where the ET technique was proven superior to the other schemes. When the PA is used within the ET scheme, an increase of average drain efficiency of as high as 40% with respect to the CW excitation was obtained for a multi-carrier input signal with 12 dB peak-to-average power ratio. © 2011 The Institution of Engineering and Technology.
Resumo:
This paper investigates the implementation of a number of circuits used to perform a high speed closest value match lookup. The design is targeted particularly for use in a search trie, as used in various networking lookup applications, but can be applied to many other areas where such a match is required. A range of different designs have been considered and implemented on FPGA. A detailed description of the architectures investigated is followed by an analysis of the synthesis results. © 2006 IEEE.
Resumo:
In this theoretical paper, the analysis of the effect that ON-state active-device resistance has on the performance of a Class-E tuned power amplifier using a shunt inductor topology is presented. The work is focused on the relatively unexplored area of design facilitation of Class-E tuned amplifiers where intrinsically low-output-capacitance monolithic microwave integrated circuit switching devices such as pseudomorphic high electron mobility transistors are used. In the paper, the switching voltage and current waveforms in the presence of ON-resistance are analyzed in order to provide insight into circuit properties such as RF output power, drain efficiency, and power-output capability. For a given amplifier specification, a design procedure is illustrated whereby it is possible to compute optimal circuit component values which account for prescribed switch resistance loss. Furthermore, insight into how ON-resistance affects transistor selection in terms of peak switch voltage and current requirements is described. Finally, a design example is given in order to validate the theoretical analysis against numerical simulation.
Resumo:
The first analysis and synthesis equations for the newly introduced inverse Class-E amplifier when operated with a finite d.c. blocking capacitance and a finite d.c.-feed inductance are presented in the paper. Closed-form design equations are derived in order to establish the circuit component values required for optimum synthesis. Excellent agreement between numerical simulation results and theoretical prediction is obtained. It is shown that drain efficiency approaching 100 at a pre-specified output power level can be achieved as zero-current switching and zero-current derivative conditions are simultaneously satisfied. The proposed analysis offers the prospect for realistic MMIC implementation.
Resumo:
A comparison of dc characteristics of fully depleted double-gate (DG) MOSFETs with respect to low-power circuit applications and device scaling has been performed by two-dimensional device simulation. Three different DG MOSFET structures including a conventional N+ polysilicon gate device with highly doped Si layer, an asymmetrical P+/N+ polysilicon gate device with low doped Si layer and a midgap metal gate device with low doped Si layer have been analysed. It was found that DG MOSFET with mid-gap metal, gates yields the best dc parameters for given off-state drain leakage current and highest immunity to the variation of technology parameters (gate length, gate oxide thickness and Si layer thickness). It is also found that an asymmetrical P+/N+ polysilicon gate DG MOSFET design offers comparable dc characteristics, but better parameter immunity to technology tolerances than a conventional DG MOSFET. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, analysis and synthesis approach for two new variants within the Class-EF power amplifier (PA) family is elaborated. These amplifiers are classified here as Class-E3 F2 and transmission-line (TL) Class-E3 F 2. The proposed circuits offer means to alleviate some of the major issues faced by existing topologies such as substantial power losses due to the parasitic resistance of the large inductor in the Class-EF load network and deviation from ideal Class-EF operation due to the effect of device output inductance at high frequencies. Both lumped-element and transmission-line load networks for the Class-E 3 F PA are described. The load networks of the Class-E3 F and TL Class-E 3 F2amplifier topologies developed in this paper simultaneously satisfy the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Optimum circuit component values are analytically derived and validated by harmonic balance simulations. Trade-offs between circuit figures of merit and component values with some practical limitations being considered are discussed. © 2010 IEEE.
Resumo:
This paper presents the background rationale and key findings for a model-based study of supercritical waste heat recovery organic Rankine cycles. The paper’s objective is to cover the necessary groundwork to facilitate the future operation of a thermodynamic organic Rankine cycle model under realistic thermodynamic boundary conditions for performance optimisation of organic Rankine cycles. This involves determining the type of power cycle for organic Rankine cycles, the circuit configuration and suitable boundary conditions. The study focuses on multiple heat sources from vehicles but the findings are generally applicable, with careful consideration, to any waste heat recovery system. This paper introduces waste heat recovery and discusses the general merits of organic fluids versus water and supercritical operation versus subcritical operation from a theoretical perspective and, where possible, from a practical perspective. The benefits of regeneration are investigated from an efficiency perspective for selected subcritical and supercritical conditions. A simulation model is described with an introduction to some general Rankine cycle boundary conditions. The paper describes the analysis of real hybrid vehicle data from several driving cycles and its manipulation to represent the thermal inertia for model heat input boundary conditions. Basic theory suggests that selecting the operating pressures and temperatures to maximise the Rankine cycle performance is relatively straightforward. However, it was found that this may not be the case for an organic Rankine cycle operating in a vehicle. When operating in a driving cycle, the available heat and its quality can vary with the power output and between heat sources. For example, the available coolant heat does not vary much with the load, whereas the quantity and quality of the exhaust heat varies considerably. The key objective for operation in the vehicle is optimum utilisation of the available heat by delivering the maximum work out. The fluid selection process and the presentation and analysis of the final results of the simulation work on organic Rankine cycles are the subjects of two future publications.
Resumo:
Power has become a key constraint in nanoscale inte-grated circuit design due to the increasing demands for mobile computing and higher integration density. As an emerging compu-tational paradigm, an inexact circuit offers a promising approach to significantly reduce both dynamic and static power dissipation for error-tolerant applications. In this paper, an inexact floating-point adder is proposed by approximately designing an exponent sub-tractor and mantissa adder. Related operations such as normaliza-tion and rounding are also dealt with in terms of inexact computing. An upper bound error analysis for the average case is presented to guide the inexact design; it shows that the inexact floating-point adder design is dependent on the application data range. High dynamic range images are then processed using the proposed inexact floating-point adders to show the validity of the inexact design; comparison results show that the proposed inexact floating-point adders can improve the power consumption and power-delay product by 29.98% and 39.60%, respectively.
Resumo:
The X-parameter based nonlinear modelling tools have been adopted as the foundation for the advanced methodology
of experimental characterisation and design of passive nonlinear devices. Based upon the formalism of the Xparameters,
it provides a unified framework for co-design of antenna beamforming networks, filters, phase shifters and
other passive and active devices of RF front-end, taking into account the effect of their nonlinearities. The equivalent
circuits of the canonical elements are readily incorporated in the models, thus enabling evaluation of PIM effect on the
performance of individual devices and their assemblies. An important advantage of the presented methodology is its
compatibility with the industry-standard established commercial RF circuit simulator Agilent ADS.
The major challenge in practical implementation of the proposed approach is concerned with experimental retrieval of the X-parameters for canonical passive circuit elements. To our best knowledge commercial PIM testers and practical laboratory test instruments are inherently narrowband and do not allow for simultaneous vector measurements at the PIM and harmonic frequencies. Alternatively, existing nonlinear vector analysers (NVNA) support X-parameter measurements in a broad frequency bands with a range of stimuli, but their dynamic range is insufficient for the PIM characterisation in practical circuits. Further opportunities for adaptation of the X-parameters methodology to the PIM
characterisation of passive devices using the existing test instruments are explored.
Resumo:
This paper proposes a wideband equivalent circuit model for a twisted split ring frequency selective surface (FSS). Such surfaces can be used for modelling and design of polarisation sensitive surfaces such as circularly polarized selective surfaces as well as structures with asymmetric transmission. The proposed model is based extraction of equivalent circuit parameters from a single split ring (SRR) FSS and magnetic coupling from periodic eigenmode analysis of the coupled SRR. The resulting equivalent circuit model demonstrates excellent agreement with full-wave simulations.
Resumo:
An analysis of the operation of a new series-L/parallel-tuned Class-E amplifier and its equivalence to the classic shunt-C/series-tuned Class-E amplifier are presented. The first reported closed form design equations for the series-L/parallel-tuned topology operating under ideal switching conditions are given, including the switch current and voltage in steady state, the circuit component values, the peak values of switch current and voltage and the power-output capability. Theoretical analysis is confirmed by numerical simulation for a 500 mW (27 dBm), 10% bandwidth, 5 V series-L/parallel-tuned, then, shunt-C/series-tuned Class-E power amplifier, operating at 2.5 GHz. Excellent agreement between theory and simulation results is achieved.
Resumo:
The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.