39 resultados para CONDUCTING NANOWIRES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An idealized jellium model of conducting nanowires with a geometric constriction is investigated by density functional theory (DFT) in the local spin density (LSD) approximation. The results reveal a fascinating variety of spin and charge patterns arising in wires of sufficiently low (r(s) >= 15) average electron density, pinned at the indentation by an apparent attractive interaction with the constriction. The spin-resolved frequency-dependent conductivity shows a marked asymmetry in the two spin channels, reflecting the spontaneous spin polarization around the wire neck. The relevance of the computational results is discussed in relation to the so-called 0.7 anomaly found by experiments in the low-frequency conductivity of nanowires at near-breaking conditions (see 2008 J. Phys.: Condens Matter 20, special issue on the 0.7 anomaly). Although our mean-field approach cannot account for the intrinsic many-body effects underlying the 0.7 anomaly, it still provides a diagnostic tool to predict impending transitions in the electronic structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of thin conducting wires with a narrow geometric constriction has been determined by density-functional theory computations in the local spin density approximation. Spontaneous spin polarization arises in nominally paramagnetic wires at sufficiently low density (r(s)>= 15). Real-space spin-polarization maps show a fascinating variety of magnetic structures pinned at the constriction. The frequency-dependent conductivity is different for the spin-up and spin-down channels and significantly lower than in wires of identically vanishing spin polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reversibility of zinc anode in alkaline medium was enhanced by electrostatic deposition of a conducting polymer (polypyrrole). Electropolymerization of pyrrole onto zinc in aqueous medium using an organic acid as dopant is feasible and preferred as zinc is less corrosive in this medium. The structure of the polymer film was analyzed by FT-IR spectroscopy and scanning electron microscopy. The effect of the polypyrrole deposit on the zinc electrode was studied by cyclic voltammetry and charge–discharge cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aromatic monomers can be polymerised using the chloroaluminate room temperature melt obtained by mixing 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminium chloride miscible in all proportions with organic solvents as an electrolyte. The chloroaluminate (AlCl4-) anion generated in this melt having a tetrahedral symmetry with equal bond lengths and bond angles is the dopant to stabilize macrocation generated near the vicinity of anode to yield better conducting and better ordered electronically conducting free standing polymer film. In this communication, we discuss the polymers derived from benzene and pyrrole and their characterization by various techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freestanding polyparaphenylene films were obtained on polymerization of benzene at potential of 1.2 V versus Al wire on substrates like platinum/transparent conducting glass as an anode. The electrolyte used was chloroaluminate room-temperature melt, which was prepared by intimate mixing of a 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminum chloride to yield a viscous liquid. This liquid was miscible in all proportions with benzene and other aromatic hydrocarbons in all proportions at room temperature. The polyparaphenylene films deposited on platinum anode exhibited a prominent cyclic voltammetric peak at 0.7 V versus Al wire as reference electrode in chloroaluminate medium. The impedance spectra gave low charge transfer resistance. The diffused reflectance electronic spectra of the film gave the peaks at 386 nm and 886 nm. The PPP films showed electronic conductivity around 3–4 × 104 S/cm by four probe method under nitrogen atmosphere. The polymer was also characterized by IR spectra, thermal studies, and SEM studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical transport and structural properties of platinum nanowires, deposited using the focussed ion beam method have been investigated. Energy dispersive X-ray spectroscopy reveals metal-rich grains (atomic composition 31% Pt and 50% Ga) in a largely non-metallic matrix of C, O and Si. Resistivity measurements (15-300 K) reveal a negative temperature coefficient with the room-temperature resistivity 80-300 times higher than that of bulk Pt. Temperature dependent current-voltage characteristics exhibit non-linear behaviour in the entire range investigated. The conductance spectra indicate increasing non-linearity with decreasing temperature, reaching 4% at 15 K. The observed electrical behaviour is explained in terms of a model for inter-grain tunnelling in disordered media, a mechanism that is consistent with the strongly disordered nature of the nanowires observed in the structure and composition analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Template electrodeposition has been used to prepare a wide range of nanostructures but has generally been restricted to aqueous electrolytes. We report the deposition of silver nanowires in a commercial nuclear track-etched polycarbonate template from the nonaqueous ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) using silver electrochemically dissolved from the anode. Transmission electron microscopy (TEM) shows that the nanowires have a very high aspect ratio with an average diameter of 80 nm and length of 5 mu m. Ionic liquid electrolytes should greatly extend the range of metals that can be electrodeposited as nanowires using templates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent to which notches inhibit axial switching of polarization in ferroelectric nanowires was investigated by monitoring the switching behavior of single crystal BaTiO(3) wires before and after patterning triangular notches along their lengths. Static zero-field domain patterns suggested a strong domain-notch interaction, implying that notches should act as pinning sites for domain wall propagation. Surprisingly though, notches appeared to assist, rather than inhibit, polar switching. The origin of this effect was rationalized using finite element modeling of the electric field distribution along the notched wire; it was found that the air gap associated with the notch acted to enhance the local field, both in the air, and in the adjacent region of the ferroelectric. It seems that this local field enhancement outweighs any pinning interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of poly(e-caprolactone) (PCL) and molybdenum sulfur iodine (MoSI) nanowires were prepared using twin-screw extrusion. Extensive microscopic examination of the composites revealed the nanowires were well dispersed in the PCL matrix, although bundles of Mo6S3I6 ropes were evident at higher loadings. Secondary electron imaging (SEI) showed the nanowires had formed an extensive network throughout the PCL matrix, resulting in increased electrical conductivity of PCL, by eight orders of magnitude, and an electrical percolation threshold of 6.5T10S3vol%. Thermal analysis (DSC), WAXD, and hot stage polarized optical microscopy (HSPOM) experiments revealed Mo6S3I6 addition altered PCL crystallization kinetics, nucleation density, and crystalline content. A greater number of smaller spherulites were formed via heterogeneous nucleation. The onset of thermal decomposition (TGA) of PCL decreased by 70-C, a consequence of the thermal degradation of Mo6S3I6 to MoO3, which in turn accelerates the formation of volatile gases during the first stage of PCL decomposition.