24 resultados para COAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper NOx emissions modelling for real-time operation and control of a 200 MWe coal-fired power generation plant is studied. Three model types are compared. For the first model the fundamentals governing the NOx formation mechanisms and a system identification technique are used to develop a grey-box model. Then a linear AutoRegressive model with eXogenous inputs (ARX) model and a non-linear ARX model (NARX) are built. Operation plant data is used for modelling and validation. Model cross-validation tests show that the developed grey-box model is able to consistently produce better overall long-term prediction performance than the other two models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove Polycyclic Aromatic Hydrocarbons (PAHs) and BTEX compounds, was installed at a Former Manufactured Gas Plant (FMGP) site. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant Granular Activated Carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal (>93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal (>80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals >95%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions of coal with CO2 at pressures of up to 30 bar concerning mechanisms of diffusion, the strength of interactions, and the irreversibility of uptake for the permanent disposal of CO2 into coal fields have been studied. Differential scanning calorimetry was used to investigate coal/CO2 interactions for North Dakota, Wyodak, Illinois No. 6, and Pittsburgh No. 8 coals. It was found that the first interactions of CO2 with coals led to strongly bound carbon dioxide on coal. Energy values attributed to the irreversible storage capacity for CO2 on coals were determined. The lowest irreversible sorption energy was found for North Dakota coal (0.44 J/g), and the highest value was for the Illinois No. 6 coal (8.93 J/g). The effect of high-pressure CO2 on the macromolecular structure of coal was also studied by means of differential scanning calorimetry. It was found that the temperature of the second-order phase transition of Wyodak coal decreases with an increase in CO2 pressure significantly, indicating that high-pressure CO2 diffuses through the coal matrix, causes significant plasticization effects, and changes the macromolecular structure of the Wyodak coal. Desorption characteristics of CO2 from the Pittsburgh No. 8 coal were studied by temperature-programmed desorption mass spectrometry. It was found that CO2 desorption from the coal is an activated process and follows a first-order kinetic model. The activation energy for CO2 desorption from the Pittsburgh No. 8 coal increased with the preadsorbed CO2 pressure, indicating that CO2 binds more strongly and demands more energy to desorb from the Pittsburgh No. 8 coal at higher pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC), temperature programmed desorption mass spectrometry (TPD-MS) and small angle neutron scattering (SANS) were used to investigate CO2 uptake by the Wyodak coal. The adsorption of carbon dioxide on Wyodak coal was studied by DSC. The exotherms evident at low temperatures are associated with the uptake of CO2 suggesting that carbon dioxide interacts strongly with the coal surface. The reduction in the value of the exotherms between the first and second runs for the Wyodak coal suggests that some CO2 is irreversibly bound to the structure even after heating to 200 °C DSC results also showed that adsorption of CO2 on the coal surface is an activated process and presumably at the temperature of the exotherms there is enough thermal energy to overcome the activation energy for adsorption. The adsorption process is instantly pursued by much slower diffusion of the gas molecules into the coal matrix (absorption). Structural rearrangement in coal by CO2 is examined by change in the glass transition temperature of coal after CO2 uptake at different pressures. The amount of gas dissolved in the coal increases with increasing CO2 pressure. TPD-MS showed that CO2 desorption from the Wyodak coal follows a first order kinetic model. Increase in the activation energy for desorption with pre-adsorbed CO2 pressure suggests that higher pressures facilitate the transport of CO2 molecules through the barriers therefore the amount of CO2 uptake by the coal is greater at higher pressures and more attempts are required to desorb CO2 molecules sorbed at elevated pressures. These conclusions were further confirmed by examining the Wyodak coal structure in high pressure CO 2 by SANS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small angle neutron scattering (SANS) has been applied to examine the effect of high pressure CO2 on the structure of Wyodak coal. Significant decrease in the scattering intensities upon exposure of the coal to high pressure CO2 showed that high pressure CO2 rapidly adsorbs on the coal and reaches to all pores in the structure. This is confirmed by strong and steep exothermic peaks observed on DSC scans during coal/ CO2 interactions. In situ small angle neutron scattering on coal at high pressure CO2 atmosphere showed an increase in scattering intensities with time suggesting that after adsorption, high pressure CO2 immediately begins to diffuse into the coal matrix, changes the macromolecular structure of the coal, swells the matrix and probably creates microporosity in coal structure by extraction of volatile components from coal. Significant decrease in the glass transition temperature of coal caused by high pressure CO2 also confirms that CO2 at elevated pressures dissolve in the coal matrix, results in significant plasticization and physical rearrangement of the coal’s macromolecular structure.