46 resultados para Bruzdzinski, Katie
Resumo:
Variable-temperature magnetic susceptibility measurements in the solid state of the bis complex of tris(1-pyrazolyl)-methane with Fe(II), [Fe(tpm)2](ClO4)2, suggest the existence of singlet-quintet spin crossover with the singlet isomer largely favored at room temperature. In acetonitrile solution, measurement of the absorption spectrum as a function of temperature reveals a spin equilibrium with the quintet population varying from ca. 6% at 233 K to ca. 30% at 295 K. When the complex in solution is irradiated with a laser pulse at wavelengths within the ligand field absorption band of the singlet isomer, ground-state depletion occurs within the pulse duration followed by fast recovery to the original absorbance level with a time constant of 25 +/- 5ns. The recovery time is virtually independent of temperature over the range +23 to -43-degrees-C, but the signal:noise ratio of the transient signals increases with decreasing temperature. The effect was observable at several monitoring wavelengths spanning the LF and MLCT absorption regions of the complex but only when the irradiation wavelength fell within the LF absorption region. Irradiation within the MLCT band produced no effect other than that of laser pulse scatter. The observations are interpreted in terms of photoperturbation of the singlet-quintet spin state equilibrium, which in this case occurs solely through excitation in the ligand field absorption region of the complex and is the first reported instance of this type for a spin-crossover complex in solution.
Resumo:
Relaxation of the 1A1 half arrow right over half arrow left 5T2 spin equilibrium in acetonitrile of the complex of Fe(II) with the multidentate pyridyl macrocyclic ligand N,N',N''-tris(2-pyridylmethyl)-1,4,7-triazacyclodecane (tp[10]aneN3) after perturbation by a pulsed laser provides the first example of biphasic kinetics for spin crossover in solution with a fast (tau
Resumo:
Objective To investigate the association between periodontitis and mortality from all causes in a prospective study in a homogenous group of 60- to 70-year-old West European men. Methodology A representative sample of 1400 dentate men, (mean age 63.8, SD 3.0 years), drawn from the population of Northern Ireland, had a comprehensive periodontal examination between 2001 and 2003. Men were divided into thirds on the basis of their mean periodontal attachment loss (PAL). The primary endpoint, death from any cause, was analysed using Kaplan-Meier survival plots and Cox's proportional hazards model. Results In total, 152 (10.9%) of the men died during a mean follow-up of 8.9 (SD 0.7) years; 37 (7.9%) men in the third with the lowest PAL (<1.8 mm) died compared with 73 (15.7%) in the third with the highest PAL (>2.6 mm). The unadjusted hazard ratio (HR) for death in the men with the highest level of PAL compared with those with the lowest PAL was 2.11 (95% CI 1.42-3.14), p < 0.0001. After adjustment for confounding variables (age, smoking, hypertension, BMI, diabetes, cholesterol, education, marital status and previous history of a cardiovascular event) the HR was 1.57 (1.04-2.36), p = 0.03. Conclusion The European men in this prospective cohort study with the most severe loss of periodontal attachment were at an increased risk of death compared with those with the lowest loss of periodontal attachment.
Resumo:
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.
Resumo:
To determine UK non-medical prescribers' (NMPs) (supplementary or independent) current participation and self-reported competence in pharmacovigilance, and their perceptions of training and future needs.