10 resultados para Bran.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice is more elevated in arsenic than all other grain crops tested to date, with whole grain (brown) rice having higher arsenic levels than polished (white). It is reported here that rice bran, both commercially purchased and specifically milled for this study, have levels of inorganic arsenic, a nonthreshold, class 1 carcinogen, reaching concentrations of approximately 1 mg/kg dry weight, around 10-20 fold higher than concentrations found in bulk grain. Although pure rice bran is used as a health food supplement, perhaps of more concern is rice bran solubles, which are marketed as a superfood and as a supplement to malnourished children in international aid programs. Five rice bran solubles products were tested, sourced from the United States and Japan, and were found to have 0.61-1.9 mg/kg inorganic arsenic. Manufactures recommend approximately 20 g servings of the rice bran solubles per day, which equates to a 0.012-0.038 mg intake of inorganic arsenic. There are no maximum concentration levels (MCLs) set for arsenic or its species in food stuffs. EU and U.S. water regulations, set at 0.01 mg/L total or inorganic arsenic, respectively, are based on the assumption that 1 L of water per day is consumed, i.e., 0.01 mg of arsenic/ day. At the manufacturers recommended rice bran solubles consumption rate, inorganic arsenic intake exceeds 0.01 mg/ day, remembering that rice bran solubles are targeted at malnourished children and that actual risk is based on mg kg(-1) day(-1) intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional milling, the aleurone layer is combined with the bran fraction. Studies indicate that the bran fraction of wheat contains the majority of the phytonutrients betaine and choline, with relatively minor concentrations in the refined flour. This present study suggests that the wheat aleurone layer (Triticum aestivum L. cv. Tiger) contains the greatest concentration of both betaine and choline (1553.44 and 209.80 mg/100 g of sample, respectively). The bran fraction contained 866.94 and 101.95 mg/100 g of sample of betaine and choline, respectively, while the flour fraction contained 23.30 mg/100 g of sample (betaine) and 28.0 mg/100 g of sample (choline). The betaine content for
the bran was lower, and the choline content was higher compared to previous studies, although it is known that there is large variation in betaine and choline contents between wheat cultivars. The ratio of betaine/choline in the aleurone fraction was approximately 7:1; in the bran, the ratio was approximately 8:1; and in the flour fraction, the ratio was approximately 1:1. The study further
emphasizes the superior phytonutrient composition of the aleurone layer.
INTRODUCTION
Wheat is a valuable source of betaine, choline (1, 2), B
vitamins, vitamin E, and a number of minerals, including iron,
zinc, magnesium, and phosphorus (3). Epidemiological studies
indicate that whole-grain consumption is protective against
several chronic diseases (4-12). It has not been fully elucidated
how whole-grain cereals or specific fractions (13) exert their
protective effect, but it is thought to be due to their content of
several nutrients associated with the reduced risk of disease.
Conventionally, whole grain is separated during milling into
bran, germ, and flour (14). The nutrient composition of these
fractions differ markedly; refined wheat flour contains approximately
50% less vitamins and minerals than whole-grain
flour (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the world's population, rice consumption is a major source of inorganic arsenic (As), a nonthreshold class 1 carcinogen. Reducing the amount of total and inorganic As within the rice grain would reduce the exposure risk. In this study, grain As was measured in 76 cultivars consisting of Bangladeshi landraces, improved Bangladesh Rice Research Institute (BRRI) cultivars, and parents of permanent mapping populations grown in two field sites in Bangladesh, Faridpur and Sonargaon, irrigated with As-contaminated tubewell water. Grain As ranged from 0.16 to 0.74 mg kg(-1) at Faridpur and from 0.07 to 0.28 mg kg(-1) at Sonargaon. Highly significant cultivar differences were detected and a significant correlation (r = 0.802) in the grain As between the two field sites was observed, indicating stable genetic differences in As accumulation. The cultivars with the highest concentration of grain As were the Bangladeshi landraces. Landraces with red bran had significantly more grain As than the cultivars with brown bran. The percent of inorganic As decreased linearly with increasing total As, but genetic variation within this trend was identified. A number of local cultivars with low grain As were identified. Some tropical japonica cultivars with low grain As have the potential to be used in breeding programs and genetic studies aiming to identify genes which decrease grain As.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques (micro-XANES, micro-X-ray fluorescence (micro-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As and localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paddy rice has been likened to nictiana sp in its ability to scavenge cadmium (Cd) from soil, whereas arsenic (As) accumulation is commonly an order of magnitude higher than in other cereal crops. In areas such as those found in parts of Hunan province in south central China, base-metal mining activities and rice farming coexist. Therefore there is a considerable likelihood that lead (Pb), in addition to Cd and As, will accumulate in rice grown in parts of this region above levels suitable for human consumption. To test this hypothesis, a widespread provincial survey of rice from mine spoilt paddies (n = 100), in addition to a follow-up market grain survey (n = 122) conducted in mine impacted areas was undertaken to determine the safety of local rice supply networks. Furthermore, a specific Cd, As, and Pb biogeochemical survey of paddy soil and rice was conducted within southern China, targeting sites impacted by mining of varying intensities to calibrate rice metal(loid) transfer models and transfer factors that can be used to predict tissue loading. Results revealed a number of highly significant correlations between shoot, husk, bran, and endosperm rice tissue fractions and that rice from mining areas was enriched in Cd, As, and Pb. Sixty-five, 50, and 34% of all the mine-impacted field rice was predicted to fail national food standards for Cd, As, and Pb, respectively. Although, not as elevated as the grains from the mine-impacted field survey, it was demonstrated that metal(loid) tainted rice was entering food supply chains intended for direct human consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selenium, an essential micronutrient for humans, is insufficient in dietary intake for millions of people worldwide. Rice as the most popular staple food in the world is one of the dominant selenium (Se) sources for people. The distribution and translocation of Se from soil to grain were investigated in a Se-rich environment in this study. The Se levels in soils ranged widely from 0.5 to 47.7 mg kg(-1). Selenium concentration in rice bran was 1.94 times higher than that in corresponding polished rice. The total Se concentrations in the rice fractions were in the following order: straw > bran > whole grain > polished rice > husk. Significant linear relationships between different rice fractions were observed with each other, and Se in the soil has a linear relationship with different rice fractions as well. Se concentration in rice can easily be predicted by soil Se concentrations or any rice fractions and vice versa according to their linear relationships. In all rice samples for Se speciation, SeMet was the major Se species, followed by MeSeCys and SeCys. The average percentage for SeMet (82.9%) and MeSeCys (6.2%) was similar in the range of total Se from 2.2 to 8.4 mg kg(-1) tested. The percentage of SeCys decreased from 6.3 to 2.8%, although its concentration elevated with the increase in total Se in rice. This could be due to the fact that SeCys is the precursor for the formation of other organic Se compounds. The information obtained may have considerable significance for assessing translocation and accumulation of Se in plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of superficial air velocity on lovastatin production by Aspergillus terreus PL10 using wheat bran and wheat straw was investigated in a 7 l and a 1200 l packed bed reactor. Mass transfer and reaction limitations on bioconversion in the 1200 l reactor was studied based on a central composite design of experiments constructed using the superficial air velocity and solid substrate composition as variables and lovastatin production as response.
The surface response prediction showed a maximum lovastatin production of 1.86 mg g-1 dry substrate on day 5 of the bioconversion process when the reactor was operated using 0.19 vvm airflow rate (23.37 cm min-1 superficial air velocity) and 54% substrate composition (wC). Lovastatin production did not increase significantly with superficial air velocity in the 7 l reactor. Variation in temperature and exit CO2 composition was recorded, and the Damköhler number was calculated for lovastatin production at these two scales. The results showed that in larger reactors mass transfer limitation controlled bioconversion while in smaller reactors bioconversion was controlled by reaction rate limitations. In addition, mass transfer limitations in larger reactors reduced the rate of metabolic heat removal, resulting in hot spots within the substrate bed.