130 resultados para Bacterial infections osseointegration
Resumo:
Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections
Resumo:
1. Mounting an immune response is likely to be costly in terms of energy and nutrients, and so it is predicted that dietary intake should change in response to infection to offset these costs. The present study focuses on the interactions between a specialist grass-feeding caterpillar species, the African armyworm Spodoptera exempta, and an opportunist bacterium, Bacillus subtilis.
2. The main aims of the study were (i) to establish the macronutrient costs to the insect host of surviving a systemic bacterial infection, (ii) to determine the relative importance of dietary protein and carbohydrate to immune system functions, and (iii) to determine whether there is an adaptive change in the host's normal feeding behaviour in response to bacterial challenge, such that the nutritional costs of resisting infection are offset.
3. We show that the survival of bacterially infected larvae increased with increasing dietary protein-to-carbohydrate (P:C) ratio, suggesting a protein cost associated with bacterial resistance. As dietary protein levels increased, there was an increase in antibacterial activity, phenoloxidase (PO) activity and protein levels in the haemolymph, providing a potential source for this protein cost. However, there was also evidence for a physiological trade-off between antibacterial activity and phenoloxidase activity, as larvae whose antibacterial activity levels were elevated in response to immune activation had reduced PO activity.
4. When given a choice between two diets varying in their P:C ratios, larvae injected with a sub-lethal dose of bacteria increased their protein intake relative to control larvae whilst maintaining similar carbohydrate intake levels. These results are consistent with the notion that S. exempta larvae alter their feeding behaviour in response to bacterial infection in a manner that is likely to enhance the levels of protein available for producing the immune system components and other factors required to resist bacterial infections (‘self-medication’).
Resumo:
Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.
Resumo:
There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.
Resumo:
Antibiotics have been the cornerstone of the clinical management of bacterial infections since their discovery in the early part of the last century. Eight decades later, their widespread, often indiscriminate use, has resulted in an overall reduction in their effectiveness, with reports of multidrug-resistant bacteria now commonplace. Increasing reliance on indwelling medical devices, which are inherently susceptible to biofilm-mediated infections, has contributed to unacceptably high rates of nosocomial infections, placing a strain on healthcare budgets. This study investigates the use of lytic bacteriophages in the treatment and prevention of biofilms of bacterial species commonly associated with infections of indwelling urological devices and catheter-associated urinary tract infections. The use of lytic bacteriophages against established biofilms of Proteus mirabilis and Escherichia coli is described, whereby biofilm populations have been reduced successfully by three to four log cycles (99.9-99.99% removal). The prevention of biofilm formation on Foley catheter biomaterials following impregnation of hydrogel-coated catheter sections with a lytic bacteriophage has also been investigated. This has revealed an approximate 90% reduction in both P. mirabilis and E. coli biofilm formation on bacteriophage-treated catheters when compared with untreated controls.
Resumo:
Resistance to antimicrobial agents undermines our ability to treat bacterial infections. It attracts intense media and political interest and impacts on personal health and costs to health infrastructures. Bacteria have developed resistance to all licensed antibacterial agents, and their ability to become resistant to unlicensed agents is often demonstrated during the development process. Conventional approaches to antimicrobial development, involving modification of existing agents or production of synthetic derivatives, are unlikely to deliver the range or type of drugs that will be needed to meet all future requirements. Although many companies are seeking novel targets, further radical approaches to both antimicrobial design and the reversal of resistance are now urgently required. In this article, we discuss ‘antisense’ (or ‘antigene’) strategies to inhibit resistance mechanisms at the genetic level. These offer an innovative approach to a global problem and could be used to restore the efficacy of clinically proven agents. Moreover, this strategy has the potential to overcome critical resistances, not only in the so-called ‘superbugs’ (methicillin-resistant Staphylococcus aureus, glycopeptide-resistant enterococci and multidrug-resistant strains of Acinetobacter baumannii, and Pseudomonas aeruginosa), but in resistant strains of any bacterial species.
Resumo:
Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly alpha-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.
Resumo:
The hypothesis that non-secretors of ABO blood group antigens, a group shown to be more susceptible to certain bacterial infections, may be at greater risk of gastroduodenal disease because of increased susceptibility to Helicobacter pylori infection was investigated. Of 101 patients with symptoms of dyspepsia who were undergoing endoscopy, 32% were non-secretors (determined from Lewis blood group phenotype), 36% had endoscopically visible gastroduodenal disease (antral gastritis, gastric ulcer, erosive duodenitis, duodenal ulcer or some combination), and 58% had H pylori detected in antral biopsy specimens. Non-secretors and patients with H pylori infection were significantly more likely to have gastroduodenal disease (p = 0.02 and p = 0.002 respectively). There was, however, no significant association between secretor status and H pylori infection, logistic regression analysis confirming that these were independently associated with gastroduodenal disease. Overall, the relative risk of gastroduodenal disease for non-secretors compared with secretors was 1.9 (95% confidence intervals 1.2, 3.2). Non-secretion of ABO blood group antigens is not related to H pylori infection but is independently and significantly associated with endoscopic gastroduodenal disease. The mechanism of this remains to be explained.
Resumo:
Natural drug discovery represents an area of research with vast potential. The investigation into the use of naturally-occurring peptides as potential therapeutic agents provides a new “chemical space” for the procurement of drug leads. Intensive and systematic studies on the broad-spectrum antimicrobial peptides found in amphibian skin secretions are of particular interest in the quest for new antibiotics to treat multiple drug-resistant bacterial infections. Here we report the molecular cloning of the biosynthetic precursor-encoding cDNAs and respective mature peptides representing a novel group of antimicrobial peptides from the skin secretions of representative species of phyllomedusine leaf frogs: the Central American red-eyed leaf frog (Agalychnis callidryas), the South American orange-legged leaf frog (Phyllomedusa hypochondrialis) and the Giant Mexican leaf frog, (Pachymedusa dacnicolor). Each novel peptide possessed the highly-conserved sequence, LGMIPL/VAISAISA/SLSKLamide, and each exhibited activity against the Gram-positive bacterium, Staphylococcus aureus and the yeast, Candida albicans, but all were devoid of haemolytic effects at concentrations up to and including the MICs for both organisms. The novel peptide group were named medusins, derived from the name of the hylid frog sub-family, Phyllomedusinae, to which all species investigated belong. These data clearly demonstrate that comparative studies of the skin secretions of phyllomedusine frogs can continue to produce novel peptides that have the potential to be leads in the development of new and effective antimicrobials.
Resumo:
Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic resistant bacterium Burkholderia cenocepacia protects less resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sub-lethal concentrations of PmB and other bactericidal antibiotics induce reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS such as superoxide ion and hydrogen peroxide was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sub-lethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation, and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study exposes BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance, and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections.
Resumo:
Constant exposure to a wide variety of microbial pathogens represents a major challenge for our skin. Antimicrobial peptides (AMPs) are mediators of cutaneous innate immunity and protect primarily against microbial infections. Cathelicidins were among the first AMPs identified in human skin and recent evidence suggests that they exert a dual role in innate immune defense: At first, due to their antimicrobial activity they kill pathogens directly. In addition, these peptides initiate a potent host response to infection resulting in cytokine release, inflammation and a cellular response. Disturbed cathelicidin expression and function was observed in several common inflammatory skin diseases, such as psoriasis where cathelicidin peptide converts inert self-DNA and self-RNA into an autoimmune stimulus. In atopic dermatitis decreased levels of cathelicidin facilitating microbial superinfections have been discussed. Furthermore, abnormally processed cathelicidin peptides induce inflammation and a vascular response in rosacea. Until recently, the molecular mechanisms underlying cathelicidin regulation were unknown. Recently, the vitamin D3 pathway was identified as the major regulator of cathelicidin expression. Consequently, vitamin D3 entered the spotlight as an immune modulator with impact on both innate and adaptive immunity. Therapies targeting vitamin D3 signaling may provide new approaches for infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions.
Resumo:
BACKGROUND: Pseudomonas aeruginosa is the most common bacterial pathogen in patients with cystic fibrosis (CF). Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. It was hypothesised that subjects with CF produce viable respirable bacterial aerosols with coughing.
METHODS: A cross-sectional study was undertaken of 15 children and 13 adults with CF, 26 chronically infected with P aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different sizes and culture of viable Gram-negative non-fermentative bacteria. Cough aerosols were collected during 5 min of voluntary coughing and during a sputum induction procedure when tolerated. Standardised quantitative culture and genotyping techniques were used.
RESULTS: P aeruginosa was isolated in cough aerosols of 25 subjects (89%), 22 of whom produced sputum samples. P aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In four cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles <or=3.3 microm aerodynamic diameter. P aeruginosa, Burkholderia cenocepacia, Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (p = 0.003). The magnitude of cough aerosols was associated with higher forced expiratory volume in 1 s (r = 0.45, p = 0.02) and higher quantitative sputum culture results (r = 0.58, p = 0.008).
CONCLUSION: During coughing, patients with CF produce viable aerosols of P aeruginosa and other Gram-negative bacteria of respirable size range, suggesting the potential for airborne transmission.
Resumo:
BACKGROUND: A clinical study to investigate the leukotriene B(4) (LTB(4))-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients.
METHODS: P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar bead murine model of P. aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs.
RESULTS: Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not in the blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals.
CONCLUSIONS: Decreased airway neutrophils induced lung proliferation and severe bacteremia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections.