10 resultados para B6


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. A spontaneously arising retinal pigment epithelial (RPE) cell line (B6-RPE07) was cloned from a primary culture of mouse RPE cells and maintained in culture for more than 18 months. Morphologic and functional properties of this cell line have been characterized.

METHODS. The morphology of the B6-RPE07 cells was examined by phase-contrast light microscopy, electron microscopy, and confocal microscopy. Barrier properties were measured by the flux of fluorescence from the apical to the basolateral compartment of culture chambers. The abilities of the cells to bind/phagocytose photoreceptor outer segments (POS) were determined by confocal microscopy, electron microscopy, and flow cytometry. Cytokine/chemokine secretion was measured by cytometric bead array. The expression of visual cycle proteins was determined by RT-PCR and Western blotting.

RESULTS. In standard culture conditions, B6-RPE07 cells display cobblestone morphology. When cultured on three-dimensional (3D) collagen gel–coated membranes, B6-RPE07 cells exhibit a monolayer epithelial polarization with apical surface microvilli. Immunohistochemistry of B6-RPE07 cultures revealed a high expression of pan-cytokeratin. B6-RPE07 cells also expressed the retinal pigment epithelium-specific marker CRALBP, but not RPE65. Cell junction proteins ZO-1 and ß-catenin, but not claudin-1/3 or occludin-1, were observed in B6-RPE07 cells. B6-RPE07 cells are able to bind, phagocytose, and digest POS. Finally, B6-RPE07 cells produce high levels of IL-6 and CCL2.

CONCLUSIONS. This is the first report of a mouse RPE cell line with morphology, phenotype, and function similar to those of in vivo mouse RPE cells. This cell line will be a valuable resource for future RPE studies, in particular for in vivo gene modification and transplantation studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Current data suggest that physiologic doses of vitamin B-6 have no significant homocysteine-lowering effect. It is possible that an effect of vitamin B-6 was missed in previous trials because of a much greater effect of folic acid, vitamin B-12, or both. OBJECTIVE: The aim of this study was to investigate the effect of low-dose vitamin B-6 supplementation on fasting total homocysteine (tHcy) concentrations in healthy elderly persons who were made replete with folate and riboflavin. DESIGN: Twenty-two healthy elderly persons aged 63-80 y were supplemented with a low dose of vitamin B-6 (1.6 mg/d) for 12 wk in a randomized, double-blind, placebo-controlled trial after repletion with folic acid (400 microg/d for 6 wk) and riboflavin (1.6 mg/d for 18 wk); none of the subjects had a vitamin B-12 deficiency. RESULTS: Folic acid supplementation lowered fasting tHcy by 19.6% (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Folate and vitamin B-6 act in generating methyl groups for homocysteine remethylation, but the kinetic effects of folate or vitamin B-6 deficiency are not known. We used an intravenous primed, constant infusion of stable isotope-labeled serine, methionine, and leucine to investigate one-carbon metabolism in healthy control (n = 5), folate-deficient (n = 4), and vitamin B-6-deficient (n = 5) human subjects. The plasma homocysteine concentration in folate-deficient subjects [15.9 +/-2.1 (SD) mu mol/l] was approximately two times that of control (7.4 +/-1.7 mmol/l) and vitamin B-6-deficient (7.7 +/-2.1 mmol/l) subjects. The rate of methionine synthesis by homocysteine remethylation was depressed (P = 0.027) in folate deficiency but not in vitamin B-6 deficiency. For all subjects, the homocysteine remethylation rate was not significantly associated with plasma homocysteine concentration (r = -0.44, P = 0.12). The fractional synthesis rate of homocysteine from methionine was positively correlated with plasma homocysteine concentration (r = 0.60, P = 0.031), and a model incorporating both homocysteine remethylation and synthesis rates closely predicted plasma homocysteine levels (r = 0.85, P = 0.0015). Rates of homocysteine remethylation and serine synthesis were inversely correlated (r = -0.89, P < 0.001). These studies demonstrate distinctly different metabolic consequences of vitamin B-6 and folate deficiencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mild hyperhomocysteinaemia is a major risk factor for vascular disease and neural tube defects (NTDs), conferring an approximately three-fold relative risk for each condition. It has several possible causes: heterozygosity for rare loss of function mutations in the genes for 5,10-methylene tetrahydrofolate reductase (MTHFR) or cystathionine-beta-synthase (CBS); dietary insufficiency of vitamin co-factors B6, B12 or folates; or homozygosity for a common 'thermolabile' mutation in the MTHFR gene which has also been associated with vascular disease and NTDs. We quantified the contribution of the thermolabile mutation to the hyperhomocysteinaemic phenotype in a working male population (625 individuals). Serum folate and vitamin B12 concentrations were also measured and their relationship with homocysteine status and MTHFR genotype assessed. The homozygous thermolabile genotype occurred in 48.4, 35.5, and 23.4% of the top 5, 10, and 20% of individuals (respectively) ranked by plasma homocysteine levels, compared with a frequency of 11.5% in the study population as a whole, establishing that the mutation is a major determinant of homocysteine levels at the upper end of the range. Serum folate concentrations also varied with genotype, being lowest in thermolabile homozygotes. The MTHFR thermolabile genotype should be considered when population studies are designed to determine the effective homocysteine-lowering dose of dietary folate supplements, and when prophylactic doses of folate are recommended for individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This cross-sectional study assessed relationships between plasma homocysteine, 'thermolabile' methylenetetrahydrofolatereductase (MTHFR) genotype, B vitamin status and measures of renal function in elderly (70-89 years) and nonagenarian (90+ years) subjects, with the hypothesis that octo/nonagenarian subjects who remain healthy into old age as defined by 'Senieur' status might show reduced genetic or environmental risk factors usually associated with hyperhomocysteinaemia. Plasma homocysteine was 9.1 micromol/l (geometric mean [GM]) for all elderly subjects. Intriguingly, homocysteine was significantly lower in 90+ (GM; 8.2 micromol/l) compared to 70-89-year-old subjects (GM; 9.8 micromol/l) despite significantly lower glomerular filtration rate (GFR) and serum B12 in nonagenarian subjects and comparable MTHFR thermolabile (TT) genotype frequency, folate and B6 status to 70-89-year-olds. For all elderly subjects, the odds ratio and 95% confidence intervals for plasma homocysteine being in the highest versus lowest quartile was 4.27 (2.04-8.92) for age 90 years, 3.4 (1.5-7.8) for serum folate 10.7nmol/l, 3.0 (0.9-10.2) for creatinine >140 compared

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the adverse effect of intravitreal injection of normal saline (NS) and phosphate buffered saline (PBS) in mouse eyes.

Methods: NS or PBS was injected intravitreally into C57BL/6J mouse eyes. Retinal lesions were monitored by fundus imaging, spectral-domain optical coherence tomography (SD-OCT), and histological investigations. Retinal immune gene expression was determined by real-time polymerase chain reaction (PCR). The toxic effect of NS and PBS or retinal protein from NS- or PBS-injected eyes on retinal pigment epithelium (RPE) was tested in B6-RPE-07 mouse RPE cell cultures.

Results: Intravitreal injection of NS dose-dependently induced localized retinal lesion in mice. Histological investigations revealed multiple vacuoles in photoreceptor outer segments and RPE cells. The lesions recovered over time and by 3 weeks post injection the majority of lesions vanished in eyes receiving 1 μl NS. Inflammatory genes, including TNF-α, IL-1β, IL-6, iNOS, and VEGF were upregulated in NS injected eyes. Intravitreal injection of PBS did not cause any pathology. The treatment of B6-RPE07 cells with 30% PBS or 30% NS did not affect RPE viability. However, incubation of 1-μg/ml retinal protein from NS-injected eyes, but not PBS-injected eyes induced RPE cell death.

Conclusion: NS is toxic to the C57BL/6J mouse retina and should not be used as a vehicle for intraocular injection. PBS is not toxic to the retina and is a preferred vehicle.

Translational Relevance: NS is not a physiological solution for intraocular injection in the C57BL/6J mice and questions its suitability for intraocular injection in other species, including human.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To examine a panel of 28 biomarkers for prediction of cardiovascular disease (CVD) and non-CVD mortality in a population-based cohort of men.

METHODS: Starting in 1979, middle-aged men in Caerphilly underwent detailed medical examination. Subsequently 2171 men were re-examined during 1989-1993, and fasting blood samples obtained from 1911 men (88%). Fibrinogen, viscosity and white cell count (WCC), routine biochemistry tests and lipids were analysed using fresh samples. Stored aliquots were later analysed for novel biomarkers. Statistical analysis of CVD and non-CVD mortality follow-up used competing risk Cox regression models with biomarkers in thirds tested at the 1% significance level after covariate adjustment.

RESULTS: During an average of 15.4years follow-up, troponin (subhazard ratio per third 1.71, 95% CI 1.46-1.99) and B-natriuretic peptide (BNP) (subhazard ratio per third 1.54, 95% CI 1.34-1.78) showed strong trends with CVD death but not with non-CVD death. WCC and fibrinogen showed similar weaker findings. Plasma viscosity, growth differentiation factor 15 (GDF-15) and interleukin-6 (IL-6) were associated positively with both CVD death and non-CVD death while total cholesterol was associated positively with CVD death but negatively with non-CVD death. C-reactive protein (C-RP), alkaline phosphatase, gamma-glutamyltransferase (GGT), retinol binding protein 4 (RBP-4) and vitamin B6 were significantly associated only with non-CVD death, the last two negatively. Troponin, BNP and IL-6 showed evidence of diminishing associations with CVD mortality through follow-up.

CONCLUSION: Biomarkers for cardiac necrosis were strong, specific predictors of CVD mortality while many inflammatory markers were equally predictive of non-CVD mortality.