20 resultados para Ambient pressure drying


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The atmospheric pressure plasma jet (APPJ) is a homogeneous non-equilibrium discharge at ambient pressure. It operates with a noble base gas and a percentage-volume admixture of a molecular gas. Applications of the discharge are mainly based on reactive species in the effluent. The effluent region of a discharge operated in helium with an oxygen admixture has been investigated. The optical emission from atomic oxygen decreases with distance from the discharge but can still be observed several centimetres in the effluent. Ground state atomic oxygen, measured using absolutely calibrated two-photon laser induced fluorescence spectroscopy, shows a similar behaviour. Detailed understanding of energy transport mechanisms requires investigations of the discharge volume and the effluent region. An atmospheric pressure plasma jet has been designed providing excellent diagnostics access and a simple geometry ideally suited for modelling and simulation. Laser spectroscopy and optical emission spectroscopy can be applied in the discharge volume and the effluent region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a great need to design functional bioactive substitute materials capable of surviving harsh and diverse conditions within the human body. Calcium-phosphate ceramics, in particular hydroxyapatite are well established substitute materials for orthopaedic and dental applications. The aim of this study was to develop a bioceramic from alga origins suitable for bone tissue application. This was achieved by a novel synthesis technique using ambient pressure at a low temperature of 100 degrees C in a highly alkaline environment. The algae was characterised using SEM, BET, XRD and Raman Spectroscopy to determine its physiochemical properties at each stage. The results confirmed the successful conversion of mineralised red alga to hydroxyapatite, by way of this low-pressure hydrothermal process. Furthermore, the synthesised hydroxyapatite maintained the unique micro-porous structure of the original algae, which is considered beneficial in bone repair applications. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite enormous potential for technological applications, fundamentals of stable non-equilibrium micro-plasmas at ambient pressure are still only partly understood. Micro-plasma jets are one sub-group of these plasma sources. For an understanding it is particularly important to analyse transport phenomena of energy and particles within and between the core and effluent of the discharge. The complexity of the problem requires the combination and correlation of various highly sophisticated diagnostics yielding different information with an extremely high temporal and spatial resolution. A specially designed rf microscale atmospheric pressure plasma jet (µ-APPJ) provides excellent access for optical diagnostics to the discharge volume and the effluent region. This allows detailed investigations of the discharge dynamics and energy transport mechanisms from the discharge to the effluent. Here we present examples for diagnostics applicable to different regions and combine the results. The diagnostics applied are optical emission spectroscopy (OES) in the visible and ultraviolet and two-photon absorption laser-induced fluorescence spectroscopy. By the latter spatially resolved absolutely calibrated density maps of atomic oxygen have been determined for the effluent. OES yields an insight into energy transport mechanisms from the core into the effluent. The first results of spatially and phase-resolved OES measurements of the discharge dynamics of the core are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The micro atmospheric pressure plasma jet is an rf driven (13.56 MHz, ~20 W) capacitively coupled discharge producing a homogeneous plasma at ambient pressure when fed with a gas flow of helium (1.4 slm) containing small admixtures of oxygen (~0.5%). The design provides excellent optical access to the plasma core. Ground state atomic oxygen densities up to 3x1016 cm-3 are measured spatially resolved in the discharge core by absolutely calibrated two-photon absorption laser-induced fluorescence spectroscopy. The atomic oxygen density builds up over the first 8 mm of the discharge channel before saturating at a maximum level. The absolute value increases linearly with applied power.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of atmospheric pressure nonthermal plasma represents an interesting and novel approach for the decontamination of surfaces colonized with microbial biofilms that exhibit enhanced tolerance to antimicrobial challenge. In this study, the influence of an atmospheric pressure nonthermal plasma jet, operated in a helium and oxygen gas mixture under ambient pressure, was evaluated against biofilms of Bacillus cereus,Staphylococcus aureus,Escherichia coli and Pseudomonas aeruginosa. Within <4 min of plasma exposure, complete eradication of the two Gram-positive bacterial biofilms was achieved. Although Gram-negative biofilms required longer treatment time, their complete eradication was still possible with 10 min of exposure. Whilst this study provides useful proof of concept data on the use of atmospheric pressure plasmas for the eradication of bacterial biofilms in vitro, it also demonstrates the critical need for improved understanding of the mechanisms and kinetics related to such a potentially significant approach. © 2012 Federation of European Microbiological Societies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micro plasmas operated at ambient pressure with dimensions of the confining geometry in the order of a few ten micrometers to a millimeter are actually in the focus of interest due to the broad regime of applicability they offer and due to a similarly broad range of open physical questions. Here we present optical measurements within the discharge core and the effluent region of an especially developed micro discharge jet. To get an understanding of the complex system of this discharge it is important to analyse transport phenomena of energy and particles within both parts of the discharge by various highly sophisticated diagnostics. As a consequence of the limited access and the dimensions of the micro discharge most of these diagnostics are optical. Here we present diagnostics applied to determine spatially resolved absolute atomic oxygen densities as the most reactive constituent of the effluent, density maps of ozone as final reaction product of the gas chemical chain induced by the discharge and phase resolved optical emission spectroscopy yielding insight into the excitation dynamics of the discharge. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The preparation of porous films directly deposited onto the surface of catalyst particles is attracting increasing attention. We report here for the first time a method that can be carried out at ambient pressure for the preparation of porous films deposited over 3 mm diameter catalyst particles of silica-supported Pt-Fe. Characterization of the sample prepared at ambient pressure (i.e., open air, OA) and its main structural differences as compared with a Na-A (LTA) coated catalyst made using an autoclave-based method are presented. The OA-coated material predominantly exhibited an amorphous film over the catalyst surface with between 4 and 13% of crystallinity as compared with fully crystallized LTA zeolite crystals. This coated sample was highly selective for CO oxidation in the presence of butane with no butane oxidation observed up to 350 degrees C. This indicates, for the first time, that the presence of a crystalline membrane is not necessary for the difference in light off temperature between CO and butane to be achieved and that amorphous films may also produce this effect. An examination of the space velocity dependence and adsorption of Na+ on the catalysts indicates that the variation in CO and butane oxidation activity is not caused by site blocking predominantly, although the Pt activity was lowered by contact with this alkali.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: The most effective treatment for high altitude sickness is prompt descent. However, rapid descent is sometimes impossible and alternative solutions are desirable. Supplemental oxygen at ambient pressure and hyperbaric oxygen in a hyperbaric tent have both been demonstrated to improve symptoms and increase arterial oxygenation (SaO(2)) in those with high altitude sickness; however, their use in combination has not previously been described in a controlled study. Methods and Results: In this feasibility study, the SaO(2) of six healthy, well-acclimatized participants rose from 76.5 to 97.5% at 4900 m and 72.5 to 96.0% at 5700 m following the administration of oxygen via a nasal demand circuit (33 ml of oxygen per pulse) inside a hyperbaric tent (107 mmHg above ambient barometric pressure) (p

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental data are presented for liquid-liquid equilibria of mixtures of the room-temperature ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C2MIM][NTf2]) with the three alcohols propan-1-ol, butan-1-ol, and pentan-1-ol and for the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide ([C4MIM][NTf2]) with cyclohexanol and 1,2-hexanediol in the temperature range of 275 K to 345 K at ambient pressure. The synthetic method has been used. Cloud points at a given composition were observed by varying the temperature and using light scattering to detect the phase splitting. In addition, the influence of small amounts of water on the demixing temperatures of binary mixtures of [C2MIM][NTf2] and propan-1-ol, butan-1-ol, and pentan-1-ol was investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide were determined as a function of the alkyl chain length on the cation from 1-propyl- to 1-hexyl- from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally the speed of sound, density and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e. relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atmospheric pressure nonthermal-plasma-activated catalysis for the removal of NOx using hydrocarbon selective catalytic reduction has been studied utilizing toluene and n-octane as the hydrocarbon reductant. When the plasma was combined with a Ag/Al2O3 catalyst, a strong enhancement in activity was observed when compared with conventional thermal activation with high conversions of both. NOx and hydrocarbons obtained at temperature at temperature ≤250 °C, where the silver catalyst is normally inactive. Importantly, even in the absence of an external heat source, significant activity was obtained. This low temperature activity provides the basis for applying nonthermal plasmas to activate emission control catalysts during cold start conditions, which remains an important issue for mobile and stationary applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-pressure processing (HPP) can produce tomato juice of high quality and safety with a short shelf life under refrigeration temperatures. Long-term higher temperature storage studies are rare and temperature tolerant products are challenging to develop. The effect of high-pressure processing (HPP) on the total quality (colour, microbial counts, phytochemical levels, antioxidant and enzymatic activities) and stability (retention over time) of tomato juice during long-term storage was investigated. Thermal processing (TP) was used as a control treatment, and overall, two different ambient conditions (20 °C and 28 °C) were tested. Immediately after processing, HPP products proved superior to TP ones (enhanced redness, total carotenoids and lycopene, stable total phenols and inactivation of pectin methyl esterase). During initial storage (30 d) most quality attributes of HPP juice remained stable. Prolonged storage, however, led to losses of most quality attributes, although HPP (20 °C) showed lower quality degradation rate constants comparison to TP and HPP (28 °C). Industrial Relevance: There is a demand for ambient stable tomato products, especially in some parts of the world, and current industrial practices (canning, pasteurisation) either compromise in product quality or require refrigeration conditions. High-pressure processing has been investigated as milder technology, with a potential to deliver superior quality. The drawback is that is also requires chill storage. The results of this study show how quality parameters behave in a high-pressured tomato product and pave the way for further development that could optimise this technology. This could be of economic importance for the tomato juice industry to develop new products stable in ambient temperatures and perhaps beneficial for cutting down the refrigeration costs under specific conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses the experimental measurements of the pressure (0.10 <p/MPa <10.0) and temperature (293.15 <T/K <393.15) dependence of the density and derived thermodynamic properties, such as the isothermal compressibility, the isobaric expansivity, the thermal pressure coefficient, and the pressure dependence of the heat capacity of several imidazolium-based ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4]; 3-methyl-1-octylimidazolium tetrafluoroborate, [omim][BF4]; 1-hexyl-3-methylimidazolium hexafluorophosphate, [hmim][PF6]; 3-methyl-1-octylimidazolium hexafluorophosphate, [omim][PF6]; 1-butyl-2,3-dimethylimidazolium hexafluorophosphate, [bmmim][PF6]; and 1-butyl-3-methylimidazolium trifluoromethansulfonate, [bmim][CF3SO3]. These ILs were chosen to provide an understanding of the influence of the cation alkyl chain length, the number of cation substitutions, and the anion influence on the properties under study. The influence of water content in the density was also studied for the most hydrophobic IL used, [omim][PF6]. A simple ideal-volume model was employed for the prediction of the imidazolium molar volumes at ambient conditions, which proved to agree well with the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

No bioadhesive patch-based system is currently marketed. This is despite an extensive number of literature reports on such systems detailing their advantages over conventional pressure sensitive adhesive-based patches in wet environments and describing successful delivery of a diverse array of drug substances. This lack of proprietary bioadhesive patches is largely due to the fact that such systems are exclusively water-based, meaning drying is difficult. In this paper we describe, for the first time, a novel multiple lamination method for production of bioadhesive patches. In contrast to patches produced using a conventional casting approach, which took 48 hours to dry, bioadhesive films prepared using the novel multiple lamination method were dried in 15?min and were folded into formed patches in a further 10?min. Patches prepared by both methods had comparable physicochemical properties. The multiple lamination method allowed supersaturation of 5-aminolevulinic acid to be achieved in formed patch matrices. However, drug release studies were unable to show an advantage for supersaturation with this particular drug, due to its water high solubility. The multiple lamination method allowed greater than 90% of incorporated nicotine to remain within formed patches, in contrast to the 48% achieved for patches prepared using a conventional casting approach. The procedure described here could readily be adapted for automation by industry. Due to the reduced time, energy and ensuing finance now required, this could lead to bioadhesive patch-based drug delivery systems becoming commercially viable. This would, in turn, mean that pathological conditions occurring in wet or moist areas of the body could now be routinely treated by prolonged site-specific drug delivery, as mediated by a commercially produced bioadhesive patch.