215 resultados para Airway Inflammation
Resumo:
BACKGROUND AND PURPOSE: Among the pathogenic mechanisms of asthma, a role for oxidative/nitrosative stress has been well documented. Recent evidence suggests that histamine H₄ receptors play a modulatory role in allergic inflammation. Here we report the effects of compound JNJ 7777120 (JNJ), a selective H4 receptor antagonist, on antigen-induced airway inflammation, paying special attention to its effects on lipocortin-1 (LC-1/annexin-A1), a 37 kDA anti-inflammatory protein that plays a key role in the production of inflammatory mediators.
EXPERIMENTAL APPROACH: Ovalbumin (OA)-sensitized guinea pigs placed in a respiratory chamber were challenged with antigen. JNJ (5, 7.5 and 10 mg.kg⁻¹) was given i.p. for 4 days before antigen challenge. Respiratory parameters were recorded. Bronchoalveolar lavage (BAL) fluid was collected and lung specimens taken for further analyses 1 h after antigen challenge. In BAL fluid, levels of LC-1, PGD2 , LTB4 and TNF-α were measured. In lung tissue samples, myeloperoxidase, caspase-3 and Mn-superoxide dismutase activities and 8-hydroxy-2-deoxyguanosine levels were measured.
KEY RESULTS: OA challenge decreased LC-1 levels in BAL fluid, induced cough, dyspnoea and bronchoconstriction and increased PGD2 , LTB4 and TNF-α levels in lung tissue. Treatment with JNJ dose-dependently increased levels of LC-1, reduced respiratory abnormalities and lowered levels of PGD2 , LTB4 and TNF-α in BAL fluid.
CONCLUSIONS AND IMPLICATIONS: Antigen-induced asthma-like reactions in guinea pigs decreased levels of LC-1 and increased TNF-α and eicosanoid production. JNJ pretreatment reduced allergic asthmatic responses and airway inflammation, an effect associated with LC-1 up-regulation.
Resumo:
The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.
Resumo:
Although some asthmatic children seem to recover from their asthma, 30–80% develop asthma again in later life. The underlying risk factors are unknown. The hypothesis for this study was that children with apparently outgrown asthma would have underlying airway inflammation. Nonbronchoscopic bronchoalveolar lavage was performed on normal children (n=35) and children who had wheezed previously (n=35). Eosinophils were raised in the lavage fluid of atopic children who had apparently outgrown asthma (median (interquartile range) 0.36 (0.05–0.74) compared to controls 0.10 (0–0.18), p=0.002). There was no relationship between length of remission and degree of airways eosinophilia. Thus, there is persistent airways inflammation in some children with outgrown asthma and this may be a risk factor for future relapse.
Resumo:
Background: Exhaled nitric oxide has been proposed as a marker for airway inflammation in asthma. The aim of this study was to compare exhaled nitric oxide levels with inflammatory cells and mediators in bronchoalveolar lavage fluid from asthmatic and normal children.
Methods: Children were recruited from elective surgical lists and a non-bronchoscopic bronchoalveolar lavage (BAL) was performed after induction of anaesthesia. Exhaled nitric oxide (parts per billion) was measured by two techniques: tidal breathing and restricted breath.
Results: Median (interquartile range) exhaled nitric oxide measured by restricted breath was increased in asthmatics compared with normal children (24.3 (10.5–66.5) v 9.7 (6.5–16.5), difference between medians 14.6 (95% CI 5.1 to 29.9), p=0.001). In asthmatic children exhaled nitric oxide correlated significantly with percentage eosinophils (r=0.78, p<0.001 (tidal breathing) and r=0.78, p<0.001 (restricted breath)) and with eosinophilic cationic protein (r=0.53, p<0.01 restricted breath)), but not with other inflammatory cells in the BAL fluid. The area under the receiver operator characteristic curves for the prediction of the presence of eosinophilic airways inflammation by exhaled nitric oxide (tidal and restricted) was 0.80 and 0.87, respectively.
Conclusions: Exhaled nitric oxide correlates closely with percentage eosinophils in BAL fluid in asthmatic children and is therefore likely to be a useful non-invasive marker of airway inflammation.
Resumo:
Background: Chronic infection in cystic fibrosis (CF) and airway inflammation leads to progressive lung injury Neutrophils are considered to be responsible for the onset and promotion of the inflammatory response within the CF lung. The relationship between infection and inflammation is complex but circulating inflammatory markers may not truly reflect the local inflammatory response in the lung. The aims of this study were to investigate the change of inflammatory biomarkers and cells within sputum and blood before and after intravenous antibiotics for a pulmonary exacerbation of CF Methods: Assays included neutrophil elastase (NE) and complex, interleukin-8 (IL-8) and soluble intercellular adhesion molecule-1 (sICAM-1), fas ligand (FAS-L), and TNFr-1. Analysis of sputum cell differential and absolute cell counts and immunocytochemistry (CD11b and CD95) on sputum and isolated blood neutrophils were carried out. Results: There were no significant differences in absolute or differential sputum cell counts or sputum sol measurements following antibiotics. There was a significant increase in the percentage of blood neutrophils with minimal CD11b staining, 28 (4.1) mean percentage (SEM) versus41 (2.9) and a decrease in the percentage showing maximal staining 30 (0.5) versus 15 (2.5). There was a significant increase in the percentage of blood neutrophils without CD95 staining, 43 (5.4) mean percentage versus 52 (5.1). Conclusion: These data suggest a modifiable systemic response to IV antibiotics but a local sustained inflammatory response in the lung.
Resumo:
Epidemiological evidence supports a positive relationship between fruit and vegetable (FV) intake, lung function and chronic obstructive pulmonary disease (COPD). Increasing FV intake may attenuate the oxidative stress and inflammation associated with COPD.
An exploratory randomised controlled trial to examine the effect of increased consumption of FV on oxidative stress and inflammation in moderate-to-severe COPD was conducted. 81 symptomatically stable patients with a habitually low FV intake (two or fewer portions of FV per day) were randomised to the intervention group (five or more portions of FV per day) or the control group (two or fewer portions of FV per day). Each participant received self-selected weekly home deliveries of FV for 12 weeks.
75 participants completed the intervention. There was a significant between-group change in self-reported FV intake and biomarkers of FV intake (zeaxanthin (p=0.034) and ß-cryptoxanthin (p=0.015)), indicating good compliance; post-intervention intakes in intervention and control groups were 6.1 and 1.9 portions of FV per day, respectively. There were no significant changes in biomarkers of airway inflammation (interleukin-8 and myeloperoxidase) and systemic inflammation (C-reactive protein) or airway and systemic oxidative stress (8-isoprostane).
This exploratory study demonstrated that patients with moderate-to-severe COPD were able to comply with an intervention to increase FV intake; however, this had no significant effect on airway or systemic oxidative stress and inflammation.
Resumo:
Cystic fibrosis (CF) is a lifelong, inflammatory multi-organ disease and the most common lethal, genetic condition in Caucasian populations, with a median survival rate of 41.5 years. Pulmonary disease, characterized by infective exacerbations, bronchiectasis and increasing airway insufficiency is the most serious manifestation of this disease process, currently responsible for over 80% of CF deaths. Chronic dysregulation of the innate immune and host inflammatory response has been proposed as a mechanism central to this genetic condition, primarily driven by the nuclear factor κB (NF-κB) pathway. Chronic activation of this transcription factor complex leads to the production of pro-inflammatory cytokines and mediators such as IL-6, IL-8 and TNF-α. A20 has been described as a central and inducible negative regulator of NF-κB. This intracellular molecule negatively regulates NF-κB-driven pro-inflammatory signalling upon toll-like receptor activation at the level of TRAF6 activation. Silencing of A20 increases cellular levels of p65 and induces a pro-inflammatory state. We have previously shown that A20 expression positively correlates with lung function (FEV1%) in CF. Despite improvement in survival rates in recent years, advancements in available therapies have been incremental. We demonstrate that the experimental use of naturally occurring plant diterpenes such as gibberellin on lipopolysaccharide-stimulated cell lines reduces IL-8 release in an A20-dependent manner. We discuss how the use of a novel bio-informatics gene expression connectivity-mapping technique to identify small molecule compounds that similarly mimic the action of A20 may lead to the development of new therapeutic approaches capable of reducing chronic airway inflammation in CF.
Resumo:
Earlier studies in adults have indicated that increased oxidative stress may occur in the blood and airways of asthmatic subjects. Therefore the aim of this study was to compare the concentrations of antioxidants and protein carbonyls in bronchoalveolar lavage fluid of clinically stable atopic asthmatic children (AA, n = 78) with our recently published reference intervals for nonasthmatic children (C, n = 124). Additionally, lipid peroxidation products (malondialdehyde) in bronchoalveolar lavage fluid and several antioxidants in plasma were determined. Bronchoalveolar lavage concentrations (median and interquartile range) of ascorbate [AA: 0.433 (0.294-0.678) versus C: 0.418 (0.253-0.646) micromol/L], urate [AA: 0.585 (0.412-0.996) versus C: 0.511 (0.372-0.687) micromol/L], alpha-tocopherol [AA: 0.025 (0.014-0.031) versus C: 0.017 (0.017-0.260) micromol/L], and oxidized proteins as reflected by protein carbonyls [AA: 1.222 (0.970-1.635) versus C: 1.243 (0.813-1.685) nmol/mg protein] were similar in both groups (p > 0.05 in all cases). The concentration of protein carbonyls correlated significantly with the number of eosinophils, mast cells, and macrophages in AA children only. Concentrations of oxidized proteins and lipid peroxidation products (malondialdehyde) correlated significantly in AA children (r = 0.614, n = 11, p = 0.044). Serum concentrations of ascorbate, urate, retinol, alpha-tocopherol, beta-carotene, and lycopene were similar in both groups whereas alpha-carotene was significantly reduced in asthmatics. Overall, increased bronchoalveolar lavage eosinophils indicate ongoing airway inflammation, which may increase oxidatively modified proteins as reflected by increased protein carbonyl concentrations.
Resumo:
Background: Bronchoscopic bronchoalveolar lavage in children to investigate bronchia disorders such as asthtna has both ethical and procedural difficulties.
Objective: The aim of this study was to establish a standardized non-bronchoscopic method to perform bronchoalveolar lavage in children attending for elective surgery to obtain normal cellular data.
Methods: Bronchoalveolar lavage was performed on normal children (n= 55) by infusing saline (20 mL) through an 8 FG suction catheter passed after endotracheal intubation. Oxygen saturation, heart and respiratory rate were monitored during the bronchoalveolar lavage procedure. Cellular analysis and total protein estimation of the lavage fluid were performed. Epithelial lining fluid volume was calculated (n = 15) using the urea dilution method.
Results: The procedure was well tolerated by all children. Total cell count and differential cell count for children (macrophages 70.8 ± 2.3%, lymphocytes 3.8 ± 0.6%, neutrophils 5,7 ± 1.0%, eosinophils 0.14 ± 0.03%. epithelial cells 19.6 ± 2.1%, mast cells 0.21 ± 0.02%) were similar to those reported for adults. Age and sex comparisons revealed no differences between groups. The mean total protein recovered in the cell free supernatant was 49.72 ± 4.29 mg/L and epithelial lining fluid volume was 0.82 ± 0.11% of return lavageate.
Conclusion This method allows bronchoalveolar lavage to be performed safely and quickly on children attending for routine elective surgery. Using this method and taking the ‘window of opportunity’ of elective surgery, the presence or absence of airway inflammation could be studied in children with various patterns of asthma during relatively asymptomatic periods.
Resumo:
The incidence of allergy and asthma in developed countries is on the increase and this trend looks likely to continue. CD4(+) T helper 2 (Th2) cells are major drivers of these diseases and their commitment is controlled by cytokines such as interleukin 4, which are in turn regulated by the suppressor of cytokine signaling (SOCS) proteins. We report that SOCS2(-/-) CD4(+) T cells show markedly enhanced Th2 differentiation. SOCS2(-/-) mice, as well as RAG1(-/-) mice transferred with SOCS2(-/-) CD4(+) T cells, exhibit elevated type 2 responses after helminth antigen challenge. Moreover, in in vivo models of atopic dermatitis and allergen-induced airway inflammation, SOCS2(-/-) mice show significantly elevated IgE, eosinophilia, type 2 responses, and inflammatory pathology relative to wild-type mice. Finally, after T cell activation, markedly enhanced STAT6 and STAT5 phosphorylation is observed in SOCS2(-/-) T cells, whereas STAT3 phosphorylation is blunted. Thus, we provide the first evidence that SOCS2 plays an important role in regulating Th2 cell expansion and development of the type 2 allergic responses.
Resumo:
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization. The Journal of Immunology, 2011, 186: 3164-3172.
Resumo:
For in vitro studies of airway pathophysiology, primary epithelial cells have many advantages over immortalised cell lines. Nasal epithelial cells are easier to obtain than bronchial epithelial cells and can be used as an alternative for in vitro studies. Our objective was to compare nasal and bronchial epithelial cells from subjects with COPD to establish if these cells respond similarly to pro-inflammatory stimuli. Cell cultures from paired nasal and bronchial brushings (21 subjects) were incubated with cigarette smoke extract (CSE) prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide. IL-6 and IL-8 were measured by ELISA and Toll-like receptor 4 (TLR-4) message and expression by RT-PCR and FACS respectively. IL-8 release correlated significantly between the two cell types. IL-6 secretion was significantly less from bronchial compared to nasal epithelial cells and secreted concentrations did not correlate. A 4 h CSE incubation was immunosuppressive for both nasal and bronchial cells, however prolonged incubation for 24 h was pro-inflammatory solely for the nasal cells. CSE reduced TLR-4 expression in bronchial cells only after 24 h, and was without effect on mRNA expression. In subjects with COPD, nasal epithelial cells cannot substitute for in vitro bronchial epithelial cells in airway inflammation studies. © 2012 Comer et al.