40 resultados para Adult Human Hippocampus
Resumo:
Objective: To quantitatively measure VIP levels and to qualitatively study the distribution of VIP fibres and demonstrate the presence of the VPAC1 receptor in human dental pulp from carious and non-carious adult human teeth. Design: Dental pulp samples were collected from non-carious, moderately carious and grossly carious adult human teeth. VIP levels were determined using radioimmunoassay. The distribution of VIP fibres was studied using immunohistochemistry. The VPAC1 receptor protein expression was determined by Western blotting. Results: VIP levels were found to be significantly elevated in the dental pulp of moderately carious compared with non-carious (p = 0.0032) or grossly carious teeth (p = 0.0029). The distribution of VIP fibres was similar in non-carious and carious teeth, except that nerve bundles appeared thicker in the pulp samples from carious compared with non-carious teeth. Western blotting indicated that the VPAC1 receptor proteins were detected in similar levels in pooled dental pulp samples from both carious and non-carious teeth. Conclusion: It is concluded that quantitative changes in the levels of VIP in human dental pulp during the caries process and the expression of VPAC1 receptor proteins in membrane extracts from carious and non-carious teeth suggests a role for VIP in modulating pulpal health and disease. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated 1/42,000, 1/43,700 and 1/49,500 SNPs explained 1/421%, 1/424% and 1/429% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/I 2-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
Objective. The use of glucocorticoids (GCs) in the treatment of RA is a frequent cause of bone loss. In vitro, however, this same class of steroids has been shown to promote the recruitment and/or maturation of primitive osteogenic precursors present in the colony forming unit-fibroblastic (CFU-F) fraction of human bone and marrow. In an effort to reconcile these conflicting observations, we investigated the effects of the synthetic GC dexamethasone (Dx) on parameters of growth and osteogenic differentiation in cultures of bone marrow stromal cells derived from a large cohort of adult human donors (n=30). Methods. Marrow suspensions were cultured in the absence and presence of Dx at concentrations between 10 pm and 1 µm. After 28 days we determined the number and diameter of colonies formed, the total number of cells, the surface expression of receptors for selected growth factors and extracellular matrix proteins and, based on the expression of the developmental markers alkaline phosphatase (AP) and the antigen recognized by the STRO-1 monoclonal antibody, the proportion of cells undergoing osteogenic differentiation and their extent of maturation. Results. At a physiologically equivalent concentration, Dx had no effect on the adhesion of CFU-F or on their subsequent proliferation, but did promote their osteogenic differentiation and further maturation. These effects were independent of changes in the expression of the receptors for fibroblast growth factors, insulin-like growth factor 1, nerve growth factor, platelet-derived growth factors and parathyroid hormone/parathyroid hormone-related protein, but were associated with changes in the number of cells expressing the 2 and 4, but not ß1, integrin subunits. At supraphysiological concentrations, the effects of Dx on the osteogenic recruitment and maturation of CFU-F and their progeny were maintained but at the expense of a decrease in cell number. Conclusions. A decrease in the proliferation of osteogenic precursors, but not in their differentiation or maturation, is likely to be a key factor in the genesis of GC-induced bone loss.
Resumo:
Recent evidence suggests that the sympathetic nervous system may have a role in modulating neurogenic inflammation and bone remodelling. Neuropeptide Y (NPY) is a well-characterized neuropeptide transmitter in the peripheral sympathetic nervous system. NPY is known to be present in human dental pulp; however, quantitative data on NPY levels in pulpal health and disease in an adult population remain to be determined. The aims of the current study were to assess, quantitatively, NPY levels by radioimmunoassay and confirm the distribution of NPY fibres by immunocytochemistry in carious and non-carious adult human pulp tissue. Our results suggest changes in the levels and distribution of NPY in human dental pulp during the caries process, with significantly higher levels of NPY in carious compared with non-carious adult human teeth. Within the carious samples studied, our finding, that NPY levels were significantly elevated in mild/moderate caries, concurs with the hypothesis that NPY could have a modulatory role in pulpal inflammation and in reparative dentine formation. © 2006 Eur J Oral Sci.
Resumo:
There is currently a need to expand the range of graft materials available to orthopaedic surgeons. This study investigated the effect of ternary phosphate based glass (PBG) compositions on the behaviour of osteoblast and osteoblast-like cells. PBGs of the formula in mol% P2O5 (50)-CaO (50-X)-Na2O (X), where X was either 2, 4, 6, 8 or 10 were produced and their influence on the proliferation, differentiation and death in vitro of adult human bone marrow stromal cells (hBMSCs) and human fetal osteoblast 1.19 (HFOB 1.19) cells were assessed. Tissue culture plastic (TCP) and hydroxyapatite (HA) were used as controls. Exposure to PBGs in culture inhibited cell adhesion, proliferation and increased cell death in both cell types studied. There was no significant difference in %cell death between the PBGs which was significantly greater than the controls. However, compared to other PBGs, a greater number of cells was found on the 48 mol% CaO which may have been due to either increased adherence, proliferation or both. This composition was capable of supporting osteogenic proliferation and early differentiation and supports the notion that chemical modification of the glass could to lead to a more biologically compatible substrate with the potential to support osteogenic grafting. Realisation of this potential should lead to the development of novel grafting strategies for the treatment of problematic bone defects.
Resumo:
Reaching to interact with an object requires a compromise between the speed of the limb movement and the required end-point accuracy. The time it takes one hand to move to a target in a simple aiming task can be predicted reliably from Fitts' law, which states that movement time is a function of a combined measure of amplitude and accuracy constraints (the index of difficulty, ID). It has been assumed previously that Fitts' law is violated in bimanual aiming movements to targets of unequal ID. We present data from two experiments to show that this assumption is incorrect: if the attention demands of a bimanual aiming task are constant then the movements are well described by a Fitts' law relationship. Movement time therefore depends not only on ID but on other task conditions, which is a basic feature of Fitts' law. In a third experiment we show that eye movements are an important determinant of the attention demands in a bimanual aiming task. The results from the third experiment extend the findings of the first two experiments and show that bimanual aiming often relies on the strategic co-ordination of separate actions into a seamless behaviour. A number of the task specific strategies employed by the adult human nervous system were elucidated in the third experiment. The general strategic pattern observed in the hand trajectories was reflected by the pattern of eye movements recorded during the experiment. The results from all three experiments demonstrate that eye movements must be considered as an important constraint in bimanual aiming tasks.
Resumo:
The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.
Resumo:
Supplementation of mesenchymal stem cells (MSCs) during hematopoietic stem cell transplantation (HSCT) alleviates complications such as graft-versus-host disease, leading to a speedy recovery of hematopoiesis. To meet such clinical demand, a fast MSCs expansion method is required. In the present study, we examined the feasibility of expanding MSCs from the isolated bone marrow mononuclear cells using a rotary bioreactor system. The cells were cultured in a rotary bioreactor with Myelocult� medium containing a combination of supplementary factors, including stem cell factor (SCF), interleukin 3 and 6 (IL-3, IL-6). After 8 days of culture, total cell numbers, Stro-1+CD44+CD34- MSCs and CD34+CD44+Stro-1- HSCs were increased 9, 29, and 8 folds respectively. Colony forming efficiency-fibroblast per day (CFE-F/day) of the bioreactor-treated cells was 1.44-fold higher than that of the cells without bioreactor treatment. The bioreactor-expanded MSCs showed expression of primitive MSCs markers endoglin (SH2) and vimentin, whereas markers associated with lineage differentiation including osteocalcin (osteogenesis), Type II collagen (chondrogenesis) and C/EBPα (adipogenesis) were not detected. Upon induction, the bioreactor-expanded MSCs were able to differentiate into osteoblasts, chondrocytes and adipocytes. Taken together, we conclude that the rotary bioreactor with the modified Myelocult� medium reported in this study may be used to rapidly expand MSCs.
Resumo:
The localization and distribution of SALMFamide immunoreactivity (IR), SI(GFNSALMFamide), in the nervous system of both the adult and larval stages of the trematode Schistosoma mansoni has been determined by an indirect immunofluorescent technique in conjunction with confocal scanning laser microscopy (CSLM). Immunostaining was widespread in the nervous system of adult male and female S. mansoni. In the central nervous system (CNS), IR was evident in nerve cells and fibres in the anterior ganglia, cerebral commissure and dorsal and ventral nerve cords. In the peripheral nervous system (PNS), IR was apparent in nerve plexuses associated with the subtegmental musculature, oral and ventral suckers, the lining of the gynaecophoric canal, and in fine nerve fibres innervating the dorsal tubercles of the male worm. In the reproductive system of male and female worms, S1-IR was only observed around the ootype/Mehlis' gland complex in the female. Immunostaining was also evident in the nervous system of both miracidium and cercarial larval stages. A post-embedding, IgG-conjugated colloidal gold immunostaining technique was employed to examine the subcellular distribution of SALMFamide-IR in the CNS of S. mansoni. Gold labelling of peptide was localized over dense-cored vesicles within nerve cell bodies and fibres constituting the neuropile of the anterior ganglia, cerebral commissure and nerve cords of the CNS. Antigen pre-absorption studies indicated that the results obtained do suggest S1-like immunostaining and not cross-reactivity with other peptides, in particular FMRFamide.
Resumo:
Human T lymphotrophic virus type 1 (HTLV-I) associated leukaemia has a poor prognosis even with chemotherapy. We describe a patient with adult T-cell leukaemia treated with allogeneic bone marrow transplantation from an HTLV-I negative identical sibling donor. During follow-up after bone marrow transplantation, HTLV-I could be repeatedly isolated inspite of anti-viral prophylaxis. The patient died of an acute encephalitis and HTLV-I could be detected in autopsy material from the brain. By a PCR-based technique using short tandem repeats (STRs) it was shown that the patient's haemopoiesis was of donor origin. This shows the infection of donor cells in vivo by an aetiological agent which has been implicated in the leukaemogenic process for adult T-cell leukaemia.
Resumo:
Recent evidence indicates that dogs' sociocognitive abilities and behaviour in a test situation are shaped by both genetic factors and life experiences. We used the 'unsolvable task' paradigm to investigate the effect of breed and age/experience on the use of human-directed gazing behaviour. Following a genetic classification based on recent genome analyses, dogs were allocated to three breed groups, namely Primitive, Hunting/Herding and Molossoid. Furthermore, we tested dogs at 2 months, 4.5. months and as adults. The test consisted of three solvable trials in which dogs could obtain food by manipulating a plastic container followed by an unsolvable trial in which obtaining the food became impossible. The dogs' behaviour towards the apparatus and the people present was analysed. At 2 months no breed group differences emerged and although human-directed gazing behaviour was observed in approximately half of the pups, it occurred for brief periods, suggesting that the aptitude to use human-directed gazing as a request for obtaining help probably develops at a later date when dogs have had more experience with human communication. Breed group differences, however, did emerge strongly in adult dogs and, although less pronounced, also in 4.5-month-old subjects, with dogs in the Hunting/Herding group showing significantly more human-directed gazing behaviour than dogs in the other two breed groups. These results suggest that, although the domestication process may have shaped the dog's human-directed communicative abilities, the later selection for specific types of work might also have had a significant impact on their emergence. © 2011 The Association for the Study of Animal Behaviour.
Resumo:
Many neuropeptide transmitters require the presence of a carboxy-terminal alpha-amide group for biological activity. Amidation requires conversion of a glycine-extended peptide intermediate into a C-terminally amidated product. This post-translational modification depends on the sequential action of two enzymes (peptidylglycine alpha-hydroxylating monooxygenase or PHM, and peptidyl-alpha-hydroxyglycine alpha-amidating lyase or PAL) that in most eukaryotes are expressed as separate domains of a single protein (peptidylglycine alpha-amidating monooxygenase or PAM). We identified a cDNA encoding PHM in the human parasite Schistosoma mansoni. Transient expression of schistosome PHM (smPHM) revealed functional properties that are different from other PHM proteins; smPHM displays a lower pH-optimum and, when expressed in mammalian cells, is heavily N-glycosylated. In adult worms, PHM is found in the trans-Golgi network and secretory vesicles of both central and peripheral nerves. The widespread occurrence of PHM in the nervous system confirms the important role of amidated neuropeptides in these parasitic flatworms. The differences between schistosome and mammalian PHM suggest that it could be a target for new chemotherapeutics.
Resumo:
Anillin is an actin-binding protein that can bind septins and is a component of the cytokinetic ring. We assessed the anillin expression in 7,579 human tissue samples and cell lines by DNA micro-array analysis. Anillin is expressed ubiquitously but with variable levels of expression, being highest in the central nervous system. The median level of anillin mRNA expression was higher in tumors than normal tissues (median fold increase 2.58; 95% confidence intervals, 2.19-5.68, P < 0.0001) except in the central nervous system where anillin in RNA levels were lower in tumors. We developed a sensitive reverse transcription-PCR strategy to show that anillin mRNA is expressed in cell lines and in cDNA panels derived from fetal and adult tissues, thus validating the microarray data. We compared anillin with Ki67 in RNA expression and found a significant linear relationship between anillin and Ki67 mRNA expression (Spearmann r similar to 0.6, P < 0.0001). Anillin mRNA expression was analyzed during tumor progression in breast, ovarian, kidney, colorectal, hepatic, lung, endometrial, and pancreatic tumors and in all tissues there was progressive, increase in anillin mRNA expression from normal to benign to malignant to metastatic disease. Finally, we used anti-anillin sera and found nuclear anillin immuncireactivity to be widespread in normal tissues, often not correlating with proliferative compartments. These data provide insight into the existence of non proliferation-associated activities of anillin and roles in interphase nuclei. Thus, anillin is overexpressed in diverse common human tumors, but not simply as a consequence of being a proliferation marker. Anillin may have potential as a novel biomarker.