57 resultados para Adducts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Essential to the conduct of epidemiologic studies examining aflatoxin exposure and the risk of heptocellular carcinoma, impaired growth, and acute toxicity has been the development of quantitative biomarkers of exposure to aflatoxins, particularly aflatoxin B-1. In this study, identical serum sample sets were analyzed for aflatoxin-albumin adducts by ELISA, high-performance liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and HPLC with isotope dilution mass spectrometry (IDMS). The human samples analyzed were from an acute aflatoxicosis outbreak in Kenya in 2004 (n = 102) and the measured values ranged from 0.018 to 67.0, nondetectable to 13.6, and 0.002 to 17.7 ng/mg albumin for the respective methods. The Deming regression slopes for the HPLC-f and ELISA concentrations as a function of the IDMS concentrations were 0.71 (r(2) = 0.95) and 3.3 (r(2) = 0.96), respectively. When the samples were classified as cases or controls, based on clinical diagnosis, all methods were predictive of outcome (P < 0.01). Further, to evaluate assay precision, duplicate samples were prepared at three levels by dilution of an exposed human sample and were analyzed on three separate days. Excluding one assay value by ELISA and one assay by HPLC-f, the overall relative SD were 8.7%, 10.5%, and 9.4% for IDMS, HPLC-f, and ELISA, respectively. IDMS was the most sensitive technique and HPLC-f was the least sensitive method. Overall, this study shows an excellent correlation between three independent methodologies conducted in different laboratories and supports the validation of these technologies for assessment of human exposure to this environmental toxin and carcinogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of a series of carbohydrate-nucleotide hybrids, designed to be multisubstrate adducts mimicking myo-inositol 1-phosphate synthase first oxidative transition state, is reported. Their ability to inhibit the synthase has been assessed and results have been rationalised computationally to estimate their likely binding mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of <1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intake of heterocyclic amines (HCAs, carcinogens produced during cooking of meat/fish, the most abundant being PhIP, DiMeIQx and MeIQx) is influenced by many factors including type/thickness of meat and cooking method/temperature/duration. Thus, assessment of HCA dietary exposure is difficult. Protein adducts of HCAs have been proposed as potential medium-term biomarkers of exposure, e.g. PhIP adducted to serum albumin or haemoglobin. However, evidence is still lacking that HCA adducts are viable biomarkers in humans consuming normal diets. The FoodCAP project, supported by World Cancer Research Fund, developed a highly sensitive mass spectrometric method for hydrolysis, extraction and detection of acid-labile HCAs in blood and assessed their validity as biomarkers of exposure. Multiple acid/alkaline hydrolysis conditions were assessed, followed by liquid-liquid extraction, clean-up by cation-exchange SPE and quantification by UPLC-ESI-MS/ MS. Blood was analysed from volunteers who completed food diaries to estimate HCA intake based on the US National Cancer Institute’s CHARRED database. Standard HCAs were recovered quantitatively from fortified blood. In addition, PhIP/MeIQx adducts bound to albumin and haemoglobin prepared in vitro using a human liver microsome system were also detectable in blood fortified at low ppt concentrations. However, except for one sample (5pg/ml PhIP), acid-labile PhIP, 7,8-DiMeIQx, 4,8-DiMeIQx and MeIQx were not observed above the 2pg/ml limit of detection in plasma (n=35), or in serum, whole blood or purified albumin, even in volunteers with high meat consumption (nominal HCA intake >2µg/day). It is concluded that HCA blood protein adducts are not viable biomarkers of exposure. Untargeted metabolomic analyses may facilitate discovery of suitable markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the effect of exogenous benzo[ a ]pyrene (BaP), an important constituent of cigarette smoke, on cultured bovine retinal pigment epithelial (RPE) cells. Evidence is presented for its metabolic conversion into benzo[ a ]pyrene diol epoxide (BPDE) and the consequent formation of potentially cytotoxic nucleobase adducts in DNA. Cultured RPE cells were treated with BaP at concentrations in the range of 0–100 µm. The presence of BaP was found to cause inhibition of cell growth and replication. BaP induced the expression of a phase I drug metabolizing enzyme which was identified as cytochrome P450 1A1 (CYP 1A1) by RT–PCR and by Western blotting. Coincident with the increased expression of CYP 1A1, covalent adducts between the mutagenic metabolite BPDE and DNA could be detected within RPE cells by immunocytochemical staining. Additional support for their formation was afforded by nuclease P1 enhanced 32P-postlabelling assays on cellular DNA. Single-cell gel electrophoresis (comet) assays showed that exposure of RPE cells to BaP rendered them markedly more susceptible to DNA damage induced by broad band UVB or blue light laser irradiation. In the case of UVB, this is consistent with the photosensitization of DNA cleavage by nucleobase adducts of BPDE. Collectively, these findings imply that BaP has a significant impact on RPE cell pathophysiology and suggest mechanisms whereby exposure to cigarette smoke might cause RPE dysfunction and cell death, thus possibly contributing to degenerative disorders of the retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs) have been implicated in the progressive vascular dysfunction which occurs during diabetic retinopathy. In the current study we have examined the role of these adducts in blood-retinal barrier (BRB) breakdown and investigated expression of the vasopermeabilizing agent vascular endothelial growth factor (VEGF) in the retina. When normoglycemic rats were injected with AGE-modified albumin daily for up to 10 days there was widespread leakage of FITC-dextran and serum albumin from the retinal vasculature when compared to control animals treated with nonmodified albumin. Ultrastructural examination of the vasculature revealed areas of attenuation of the retinal vascular endothelium and increased vesicular organelles only in the AGE-exposed rats. Quantitative RT-PCR and in situ hybridization demonstrated a significant increase in retinal VEGF mRNA expression (P <0.05). These results suggest that AGEs can initiate BRB dysfunction in nondiabetic rats and a concomitant increase in retinal VEGF expression. These findings may have implications for the role of AGEs in the pathogenesis of diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was undertaken to test whether inhibition of the proangiogenic inflammatory cytokine tumor necrosis factor (TNF)-alpha can modulate retinal hypoxia and preretinal neovascularization in a murine model of oxygen-induced retinopathy (OIR). OIR was produced in TNF-alpha-/- and wild-type (WT) control C57B6 neonatal mice by exposure to 75% oxygen between postnatal days 7 and 12 (P7 to P12). Half of each WT litter was treated with the cytokine inhibitor semapimod (formerly known as CNI-1493) (5 mg/kg) by daily intraperitoneal injection from the time of reintroduction to room air at P12 until P17. The extent of preretinal neovascularization and intraretinal revascularization was quantified by image analysis of retinal flat-mounts and retinal hypoxia correlated with vascularization by immunofluorescent localization of the hypoxia-sensitive drug pimonidazole (hypoxyprobe, HP). HP adducts were also characterized by Western analysis and quantified by competitive enzyme-linked immunosorbent assay. TNF-alpha-/- and WT mice showed a similar sensitivity to hyperoxia-induced retinal ischemia at P12. At P13 some delay in early reperfusion was evident in TNFalpha-/- and WT mice treated with semapimod. However, at P17 both these groups had significantly better vascular recovery with less ischemic/hypoxic retina and preretinal neovascularization compared to untreated retinopathy in WT mice. Immunohistochemistry showed deposition of HP in the avascular inner retina but not in areas underlying preretinal neovascularization, indicating that such aberrant vasculature can reduce retinal hypoxia. Inhibition of TNF-alpha significantly, improves vascular recovery within ischemic tissue and reduces pathological neovascularization in OIR. HP provides a useful tool for mapping and quantifying tissue hypoxia in experimental ischemic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: A critical event in the pathogenesis of diabetic retinopathy is the inappropriate adherence of leukocytes to the retinal capillaries. Advanced glycation end-products (AGEs) are known to play a role in chronic inflammatory processes, and the authors postulated that these adducts may play a role in promoting pathogenic increases in proinflammatory pathways within the retinal microvasculature. METHODS: Retinal microvascular endothelial cells (RMECs) were treated with glycoaldehyde-modified albumin (AGE-Alb) or unmodified albumin (Alb). NFkappaB DNA binding was measured by electromobility shift assay (EMSA) and quantified with an ELISA: In addition, the effect of AGEs on leukocyte adhesion to endothelial cell monolayers was investigated. Further studies were performed in an attempt to confirm that this was AGE-induced adhesion by co-incubation of AGE-treated cells with soluble receptor for AGE (sRAGE). Parallel in vivo studies of nondiabetic mice assessed the effect of intraperitoneal delivery of AGE-Alb on ICAM-1 mRNA expression, NFkappaB DNA-binding activity, leukostasis, and blood-retinal barrier breakdown. RESULTS: Treatment with AGE-Alb significantly enhanced the DNA-binding activity of NFkappaB (P = 0.0045) in retinal endothelial cells (RMECs) and increased the adhesion of leukocytes to RMEC monolayers (P = 0.04). The latter was significantly reduced by co-incubation with sRAGE (P <0.01). Mice infused with AGE-Alb demonstrated a 1.8-fold increase in ICAM-1 mRNA when compared with control animals (P <0.001, n = 20) as early as 48 hours, and this response remained for 7 days of treatment. Quantification of retinal NFkappaB demonstrated a threefold increase with AGE-Alb infusion in comparison to control levels (AGE Alb versus Alb, 0.23 vs. 0.076, P <0.001, n = 10 mice). AGE-Alb treatment of mice also caused a significant increase in leukostasis in the retina (AGE-Alb versus Alb, 6.89 vs. 2.53, n = 12, P <0.05) and a statistically significant increase in breakdown of the blood-retinal barrier (AGE Alb versus Alb, 8.2 vs. 1.6 n = 10, P <0.001). CONCLUSIONS: AGEs caused upregulation of NFkappaB in the retinal microvascular endothelium and an AGE-specific increase in leukocyte adhesion in vitro was also observed. In addition, increased leukocyte adherence in vivo was demonstrated that was accompanied by blood-retinal barrier dysfunction. These findings add further evidence to the thinking that AGEs may play an important role in the pathogenesis of diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein TrwC is the conjugative relaxase responsible for DNA processing in plasmid R388 bacterial conjugation. TrwC has two catalytic tyrosines, Y18 and Y26, both able to carry out cleavage reactions using unmodified oligonucleotide substrates. Suicide substrates containing a 30-Sphosphorothiolate linkage at the cleavage site displaced TrwC reaction towards covalent adducts and thereby enabled intermediate steps in relaxase reactions to be investigated. Two distinct covalent TrwC–oligonucleotide complexes could be separated from noncovalently bound protein by SDS–PAGE. As observed by mass spectrometry, one complex contained a single, cleaved oligonucleotide bound to Y18, whereas the other contained two cleaved oligonucleotides, bound to Y18 and Y26. Analysis of the cleavage reaction using suicide substrates and Y18F or Y26F mutants showed that efficient Y26 cleavage only occurs after Y18 cleavage. Strand-transfer reactions carried out with the isolated Y18–DNA complex allowed the assignment of specific roles to each tyrosine. Thus, only Y18 was used for initiation. Y26 was specifically used in the second transesterification that leads to strand transfer, thus catalyzing the termination reaction that occurs in the recipient cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. Vascular repair by marrow-derived endothelial progenitor cells (EPCs) is impaired during diabetes, although the precise mechanism of this dysfunction remains unknown. The hypothesis for the study was that progressive basement membrane (BM) modification by advanced glycation end products (AGEs) contributes to impairment of EPC reparative function after diabetes-related endothelial injury.

METHODS. EPCs isolated from peripheral blood were characterized by immunocytochemistry and flow cytometry. EPC interactions on native or AGE-modified fibronectin (AGE-FN) were studied for attachment and spreading, whereas chemotaxis to SDF-1 was assessed with the Dunn chamber assay. In addition, photoreactive agent-treated monolayers of retinal microvascular endothelial cells (RMECs) produced circumscribed areas of apoptosis and the ability of EPCs to “endothelialize” these wounds was evaluated.

RESULTS. EPC attachment and spreading on AGE-FN was reduced compared with control cells (P < 0.05–0.01) but was significantly restored by pretreatment with Arg-Gly-Asp (RGD). Chemotaxis of EPCs was abolished on AGE-FN but was reversed by treatment with exogenous RGD. On wounded RMEC monolayers, EPCs showed clustering at the wound site, compared with untreated regions (P < 0.001); AGE-FN significantly reduced this targeting response (P < 0.05). RGD supplementation enhanced EPC incorporation in the monolayer, as determined by EPC participation in tight junction formation and restoration of transendothelial electric resistance (TEER).

CONCLUSIONS. AGE-modification of vascular substrates impairs EPC adhesion, spreading, and migration; and alteration of the RGD integrin recognition motif plays a key role in these responses. The presence of AGE adducts on BM compromises repair by EPC with implications for vasodegeneration during diabetic microvasculopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis: Patients with type 1 diabetes mellitus are more susceptible than healthy individuals to exercise-induced oxidative stress and vascular endothelial dysfunction, which has important implications for the progression of disease. Thus, in the present study, we designed a randomised double-blind, placebo-controlled trial to test the original hypothesis that oral prophylaxis with vitamin C attenuates rest and exercise-induced free radical-mediated lipid peroxidation in type 1 diabetes mellitus. Methods: All data were collected from hospitalised diabetic patients. The electron paramagnetic resonance spectroscopic detection of spin-trapped a-phenyl-tert-butylnitrone (PBN) adducts was combined with the use of supporting markers of lipid peroxidation and non-enzymatic antioxidants to assess exercise-induced oxidative stress in male patients with type 1 diabetes (HbA1c 7.9±1%, n=12) and healthy controls (HbA1c 4.6±0.5%, n=14). Following participant randomisation using numbers in a sealed envelope, venous blood samples were obtained at rest, after a maximal exercise challenge and before and 2 h after oral ingestion of 1 g ascorbate or placebo. Participants and lead investigators were blinded to the administration of either placebo or ascorbate treatments. Primary outcome was the difference in changes in free radicals following ascorbate ingestion. Resuts: Six diabetic patients and seven healthy control participants were randomised to each of the placebo and ascorbate groups. Diabetic patients (n=12) exhibited an elevated concentration of PBN adducts (p<0.05 vs healthy, n=14), which were confirmed as secondary, lipid-derived oxygen-centred alkoxyl (RO•) radicals (a nitrogen=1.37 mT and aßhydrogen=0.18 mT). Lipid hydroperoxides were also selectively elevated and associated with a depression of retinol and lycopene (p<0.05 vs healthy). Vitamin C supplementation increased plasma vitamin C concentration to a similar degree in both groups (p<0.05 vs pre-supplementation) and attenuated the exercise-induced oxidative stress response (p<0.05 vs healthy). There were no selective treatment differences between groups in the primary outcome variable. Conclusions/ interpretation: These findings are the first to suggest that oral vitamin C supplementation provides an effective prophylaxis against exercise-induced free radical-mediated lipid peroxidation in human diabetic blood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world.

The formation of advanced glycation end products (AGEs) is a natural function of ageing but accumulation of these adducts also represents a key pathophysiological event in a range of important human diseases. AGEs act as mediators of neurodegeneration, induce irreversible changes in the extracellular matrix, vascular dysfunction and pro-inflammatory signalling. Since many cells and tissues of the eye are profoundly influenced by such processes, it is fitting that advanced glycation is now receiving considerable attention as a possible pathogenic factor in visual disorders.

This review presents the current evidence for a pathogenic role for AGEs and activation of the receptor for AGEs (RAGE) in initiation and progression of retinal disease. It draws upon the clinical and experimental literature and highlights the opportunities for further research that would definitively establish these adducts as important instigators of retinal disease. The therapeutic potential for novel agents that can ameliorate AGE formation of attenuate RAGE signalling in the retina is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial free radical formation has been implicated as a potential mechanism underlying degenerative senescence, although human data are lacking. Therefore, the present study was designed to examine if resting and exercise-induced intramuscular free radical-mediated lipid peroxidation is indeed increased across the spectrum of sedentary aging. Biopsies were obtained from the vastus lateralis in six young (26 ± 6 yr) and six aged (71 ± 6 yr) sedentary males at rest and after maximal knee extensor exercise. Aged tissue exhibited greater (P < 0.05 vs. the young group) electron paramagnetic resonance signal intensity of the mitochondrial ubisemiquinone radical both at rest (+138 ± 62%) and during exercise (+143 ± 40%), and this was further complemented by a greater increase in a-phenyl-tert-butylnitrone adducts identified as a combination of lipid-derived alkoxyl-alkyl radicals (+295 ± 96% and +298 ± 120%). Lipid hydroperoxides were also elevated at rest (0.190 ± 0.169 vs. 0.148 ± 0.071 nmol/mg total protein) and during exercise (0.567 ± 0.259 vs. 0.320 ± 0.263 nmol/mg total protein) despite a more marked depletion of ascorbate and uptake of a/ß-carotene, retinol, and lycopene (P < 0.05 vs. the young group). The impact of senescence was especially apparent when oxidative stress biomarkers were expressed relative to the age-related decline in mitochondrial volume density and absolute power output at maximal exercise. In conclusion, these findings confirm that intramuscular free radical-mediated lipid peroxidation is elevated at rest and during acute exercise in aged humans.