5 resultados para Active learning methods


Relevância:

90.00% 90.00%

Publicador:

Resumo:

For a structural engineer, effective communication and interaction with architects cannot be underestimated as a key skill to success throughout their professional career. Structural engineers and architects have to share a common language and understanding of each other in order to achieve the most desirable architectural and structural designs. This interaction and engagement develops during their professional career but needs to be nurtured during their undergraduate studies. The objective of this paper is to present the strategies employed to engage higher order thinking in structural engineering students in order to help them solve complex problem-based learning (PBL) design scenarios presented by architecture students. The strategies employed were applied in the experimental setting of an undergraduate module in structural engineering at Queen’s University Belfast in the UK. The strategies employed were active learning to engage with content knowledge, the use of physical conceptual structural models to reinforce key concepts and finally, reinforcing the need for hand sketching of ideas to promote higher order problem-solving. The strategies employed were evaluated through student survey, student feedback and module facilitator (this author) reflection. The strategies were qualitatively perceived by the tutor and quantitatively evaluated by students in a cross-sectional study to help interaction with the architecture students, aid interdisciplinary learning and help students creatively solve problems (through higher order thinking). The students clearly enjoyed this module and in particular interacting with structural engineering tutors and students from another discipline

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The angle concept is a multifaceted concept having static and dynamic definitions. The static definition of the angle refers to “the space between two rays” or “the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamic definition of the angle concept highlights that the size of angle is the amount of rotation in direction (Fyhn, 2006). Since both definitions represent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may hold misconceptions about the angle concept. In this regard, the aim of this research was to explore high achievers’ knowledge regarding the definition of the angle concept as well as to investigate their erroneous answers on the angle concept.

104 grade 6 students drawn from four well-established elementary schools of Yozgat, Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5, and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.

The angle concept is a multifaceted concept having static and dynamic definitions.The static definition of the angle refers to “the space between two rays” or“the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamicdefinition of the angle concept highlights that the size of angle is the amountof rotation in direction (Fyhn, 2006). Since both definitionsrepresent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may holdmisconceptions about the angle concept. In this regard, the aim of thisresearch was to explore high achievers’ knowledge regarding the definition ofthe angle concept as well as to investigate their erroneous answers on theangle concept.

104grade 6 students drawn from four well-established elementary schools of Yozgat,Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5,and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.

In the first question, students were asked to answer a multiple choice questions consisting of two statics definitions and one dynamic definition of the angle concept. Only 38 of 104 students were able to recognize these three definitions. Likewise, Mitchelmore and White (1998) investigated that less than10% of grade 4 students knew the dynamic definition of the angle concept. Additionally,the purpose of the second question was to figure out how well students could recognize 0-degree angle. We found that 49 of 104 students were unable to recognize MXW as an angle. While 6 students indicated that the size of MXW is0, other 6 students revealed that the size of MXW is 360. Therefore, 12 of 104students correctly answered this questions. On the other hand, 28 of 104students recognized the MXW angle as 180-degree angle. This finding demonstrated that these students have difficulties in naming the angles.Moreover, the third question consisted of three concentric circles with center O and two radiuses of the outer circle, and the intersection of the radiuses with these circles were named. Then, students were asked to compare the size of AOB, GOD and EOF angles. Only 36 of 104 students answered correctly by indicating that all three angles are equal, whereas 68 of 104 students incorrectly responded this question by revealing AOB<GOD< EOF. These students erroneously thought the size of the angle is related to either the size of the arc marking the angle or the area between the arms of the angle and the arc marking angle. These two erroneous strategies for determining the size of angles have been found by a few studies (Clausen-May,2008; Devichi & Munier, 2013; Kim & Lee, 2014; Mithcelmore, 1998;Wilson & Adams, 1992). The last question, whose aim was to determine how well students can adapt theangle concept to real life, consisted of an observer and a barrier, and students were asked to color the hidden area behind the barrier. Only 2 of 104students correctly responded this question, whereas 19 of 104 students drew rays from the observer to both sides of the barrier, and colored the area covered by the rays, the observer and barrier. While 35 of 104 students just colored behind the barrier without using any strategies, 33 of 104 students constructed two perpendicular lines at the both end of the barrier, and colored behind the barrier. Similarly, Munier, Devinci and Merle (2008) found that this incorrect strategy was used by 27% of students.

Consequently, we found that although the participants in this study were high achievers, they still held several misconceptions on the angle concept and had difficulties in adapting the angle concept to real life.

Keywords: the angle concept;misconceptions; erroneous answers; high achievers

References

Clausen-May, T. (2008). AnotherAngle on Angles. Australian Primary Mathematics Classroom, 13(1),4–8.

Devichi, C., & Munier, V.(2013). About the concept of angle in elementary school: Misconceptions andteaching sequences. The Journal of Mathematical Behavior, 32(1),1–19. http://doi.org/10.1016/j.jmathb.2012.10.001

Fyhn, A. B. (2006). A climbinggirl’s reflections about angles. The Journal of Mathematical Behavior, 25(2),91–102. http://doi.org/10.1016/j.jmathb.2006.02.004

Henderson, D. W., & Taimina,D. (2005). Experiencing geometry: Euclidean and non-Euclidean with history(3rd ed.). New York, USA: Prentice Hall.

Kim, O.-K., & Lee, J. H.(2014). Representations of Angle and Lesson Organization in Korean and AmericanElementary Mathematics Curriculum Programs. KAERA Research Forum, 1(3),28–37.

Mitchelmore, M. C., & White,P. (1998). Development of angle concepts: A framework for research. MathematicsEducation Research Journal, 10(3), 4–27.

Mithcelmore, M. C. (1998). Youngstudents’ concepts of turning and angle. Cognition and Instruction, 16(3),265–284.

Munier, V., Devichi, C., &Merle, H. (2008). A Physical Situation as a Way to Teach Angle. TeachingChildren Mathematics, 14(7), 402–407.

Wilson, P. S., & Adams, V.M. (1992). A Dynamic Way to Teach Angle and Angle Measure. ArithmeticTeacher, 39(5), 6–13.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many engineers currently in professional practice will have gained a degree level qualification which involved studying a curriculum heavy with mathematics and engineering science. While this knowledge is vital to the engineering design process so also is manufacturing knowledge, if the resulting designs are to be both technically and commercially viable.
The methodology advanced by the CDIO Initiative aims to improve engineering education by teaching in the context of Conceiving, Designing, Implementing and Operating products, processes or systems. A key element of this approach is the use of Design-Built-Test (DBT) projects as the core of an integrated curriculum. This approach facilitates the development of professional skills as well as the application of technical knowledge and skills developed in other parts of the degree programme. This approach also changes the role of lecturer to that of facilitator / coach in an active learning environment in which students gain concrete experiences that support their development.
The case study herein describes Mechanical Engineering undergraduate student involvement in the manufacture and assembly of concept and functional prototypes of a folding bicycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background
Prostate cancer is one of the most common male cancers worldwide. Active Surveillance (AS) has been developed to allow men with lower risk disease to postpone or avoid the adverse side effects associated with curative treatments until the disease progresses. Despite the medical benefits of AS, it is reported that living with untreated cancer can create a significant emotional burden for patients.

Methods/design
The aim of this study is to gain insight into the experiences of men eligible to undergo AS for favourable-risk PCa.

This study has a mixed-methods sequential explanatory design consisting of two phases: quantitative followed by qualitative. Phase 1 has a multiple point, prospective, longitudinal exploratory design. Ninety men diagnosed with favourable-risk prostate cancer will be assessed immediately post-diagnosis (baseline) and followed over a period of 12 months, in intervals of 3 month. Ninety age-matched men with no cancer diagnosis will also be recruited using peer nomination and followed up in the same 3 month intervals. Following completion of Phase 1, 10–15 AS participants who have reported both the best and worst psychological functioning will be invited to participate in semi-structured qualitative interviews. Phase 2 will facilitate further exploration of the quantitative results and obtain a richer understanding of participants’ personal interpretations of their illness and psychological wellbeing.

Discussion
To our knowledge, this is the first study to utilise early baseline measures; include a healthy comparison group; calculate sample size through power calculations; and use a mixed methods approach to gain a deeper more holistic insight into the experiences of men diagnosed with favourable-risk prostate cancer.