28 resultados para Abîme marin
Resumo:
We study the influence of non-ideal boundary and initial conditions (BIC) of a temporal analysis of products (TAP) reactor model on the data (observed exit flux) analysis. The general theory of multi-response state-defining experiments for a multi-zone TAP reactor is extended and applied to model several alternative boundary and initial conditions proposed in the literature. The method used is based on the Laplace transform and the transfer matrix formalism for multi-response experiments. Two non-idealities are studied: (1) the inlet pulse not being narrow enough (gas pulse not entering the reactor in Dirac delta function shape) and (2) the outlet non-ideality due to imperfect vacuum. The effect of these non-idealities is analyzed to the first and second order of approximation. The corresponding corrections were obtained and discussed in detail. It was found that they are negligible. Therefore, the model with ideal boundary conditions is proven to be completely adequate to the description and interpretation of transport-reaction data obtained with TAP-2 reactors.
Resumo:
The ability to detect harmful algal bloom (HAB) species and their toxins in real- or near real-time is a critical need for researchers studying HAB/toxin dynamics, as well as for coastal resource managers charged with monitoring bloom populations in order to mitigate their wide ranging impacts. The Environmental Sample Processor (ESP), a robotic electromechanical/fluidic system, was developed for the autonomous, subsurface application of molecular diagnostic tests and has successfully detected several HAB species using DNA probe arrays during field deployments. Since toxin production and thus the potential for public health and ecosystem effects varies considerably in natural phytoplankton populations, the concurrent detection of HAB species and their toxins onboard the ESP is essential. We describe herein the development of methods for extracting the algal toxin domoic acid (DA) from Pseudonitzschia cells (extraction efficiency >90%) and testing of samples using a competitive ELISA onboard the ESP. The assay detection limit is in the low ng/mL range (in extract), which corresponds to low ng/L levels of DA in seawater for a 0.5 L sample volume acquired by the ESP. We also report the first in situ detection of both a HAB organism (i.e., Pseudo-nitzschia) and its toxin, domoic acid, via the sequential (within 2-3 h) conduct of species- and toxin-specific assays during ESP deployments in Monterey Bay, CA, USA. Efforts are now underway to further refine the assay and conduct additional calibration exercises with the aim of obtaining more reliable, accurate estimates of bloom toxicity and thus their potential impacts. Published by Elsevier B.V.
Resumo:
PbZrO3/SrRuO3/SrTiO3 (100) epitaxial heterostructures with different thickness of the PbZrO3 (PZO) layer (d(PZO) similar to 5-160 nm) were fabricated by pulsed laser deposition. The ultrathin PZO films (d(PZO) <= 10 nm) were found to possess a rhombohedral structure. On increasing the PZO film thickness, a bulk like orthorhombic phase started forming in the film with d(PZO) similar to 22 nm and became abundant in the thicker films. Nanobeam electron diffraction and room-temperature micro-Raman measurements revealed that the stabilization of the rhombohedral phase of PZO could be attributed to the epitaxial strain accommodated by the heterostructures. Room-temperature polarization vs electric field measurements performed on different samples showed characteristic double hysteresis loops of antiferroelectric materials accompanied by a small remnant polarization for the thick PZO films (dPZO >= 50 nm). The remnant polarization increased by reducing the PZO layer thickness, and a ferroelectric like hysteresis loop was observed for the sample with d(PZO) similar to 22 nm. Local ferroelectric properties measured by piezoresponse force microscopy also exhibited a similar thickness-dependent antiferroelectric-ferroelectric transition. Room-temperature electrical properties observed in the PZO thin films in correlation to their structural characteristics suggested that a ferroelectric rhombohedral phase could be stabilized in thin epitaxial PZO films experiencing large interfacial compressive stress.
Resumo:
Spatially resolved polarization switching In ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model. The comparison with microstructures suggests a strong spatial variability of the switching dynamics inside the nanocapacitors.
Resumo:
We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO(3) thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO(3) film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures. This approach can be further extended to unambiguous mapping of electrostatic signal contributions to PFM and related techniques.